Advertisement

0.55 Tb/s heterogeneous Nyquist-WDM superchannel using different polarization multiplexed subcarriers

  • Divya Sharma
  • Y. K. PrajapatiEmail author
  • Rajeev Tripathi
Original Paper
  • 23 Downloads

Abstract

This paper depicts the design of 0.55 Tb/s heterogeneous Flexi-rate Nyquist-wavelength division multiplexed (Nyquist-WDM) Superchannel. Here, for the first time, four subcarriers of different modulation formats are accommodated, namely polarization multiplexed-binary phase-shift keying, polarization multiplexed-quadrature phase-shift keying (PM-QPSK), polarization multiplexed-8-quadrature amplitude modulation and PM-16QAM, each with 27.75 Gbaud symbol rate. The system transmission performance with acceptable bit error rate (BER) 4 × 10−3 is analyzed over pure silica core fiber (PSCF) in the presence of hybrid optical amplification, i.e., Raman amplifier along with a counter-propagating pump and Erbium-doped fiber amplifier. The presence of this hybrid optical amplification unit results in a limited optical signal-to-noise ratio requirement and makes the whole system cost-effective. The proposed work delivers excellent spectral efficiency of 4.5 b/s/Hz and highest transmission reach of 5500 km for PM-QPSK subcarrier and 2300 km for PM-16QAM subcarrier in the presence of PSCF. The system performance against intersymbol interference and noise is also analyzed with the aid of eye pattern plot at a minimum and maximum transmission length.

Keywords

Superchannel Nyquist-WDM Heterogeneous system PM-BPSK PM-QPSK PM-8QAM PM-16QAM Counter pump Raman amplifier Eye pattern 

Notes

References

  1. 1.
    Zhou, Y.R., Smith, K., West, S., Johnston, M., Weatherhead, J., Weir, P., Hammond, J., Lord, A., Chen, J., Pan, W., Cao, C.: Field trial demonstration of real-time optical superchannel transport up to 5.6 Tb/s Over 359 km and 2 Tb/s over a live 727 km flexible grid optical link using 64 GBaud software configurable transponders. J. Lightw. Technol. 35, 499–505 (2017)CrossRefGoogle Scholar
  2. 2.
    Bosco, G., Curri, V., Carena, A., Poggiolini, P., Forghieri, F.: On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. J. Lightw. Technol. 29, 53–61 (2011)CrossRefGoogle Scholar
  3. 3.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021, Cisco white paper, 2017Google Scholar
  4. 4.
    Bayvel, P., Maher, R., Xu, T., Liga, G., Shevchenko, N.A., Lavery, D., Alvarado, A., Killey, R.I.: Maximizing the optical network capacity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2062), 20140440 (2016)CrossRefGoogle Scholar
  5. 5.
    Anoh, K.O., Noras, J.M., Abd-Alhameed, R.A., Jones, S.M., Voudouris, K.N.: A new approach for designing orthogonal wavelets for multicarrier applications. AEU-Int. J. Electron. Commun. 68, 616–622 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, P., Xi, L., Yuan, J., Tang, X., Zhang, W., Li, J., Zhang, X.: Fiber nonlinearity-insensitive OSNR monitoring for coherent PM-QPSK-Nyquist-WDM system. Opt. Fiber Technol. 36, 215–221 (2017)CrossRefGoogle Scholar
  7. 7.
    Kamal, S., Azurdia-Meza, C.A., Lee, K.: Suppressing the effect of ICI power using dual sinc pulses in OFDM-based systems. AEU-Int. J. Electron. Commun. 70, 953–960 (2016)CrossRefGoogle Scholar
  8. 8.
    Hu, H., Jopson, R.M., Gnauck, A.H., Randel, S., Chandrasekhar, S.: Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations. Opt. Express 25, 1618–1628 (2017)CrossRefGoogle Scholar
  9. 9.
    Yu, J., Zhang, J.: Recent progress on high-speed optical transmission. Digit. Commun. Netw. 2, 65–76 (2016)CrossRefGoogle Scholar
  10. 10.
    Xu, T., Li, J., Jacobsen, G., Popov, S., Djupsjobacka, A., Schatz, R., Zhang, Y., Bayvel, P.: Field trial over 820 km installed SSMF and its potential terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission. Opt. Commun. 353, 133–138 (2015)CrossRefGoogle Scholar
  11. 11.
    Iyer, S., Singh, S.P.: Spectral and power efficiency investigation in single-and multi-line-rate optical wavelength division multiplexed (WDM) networks. Photonic Netw. Commun. 33, 39–51 (2017)CrossRefGoogle Scholar
  12. 12.
    Lundberg, L., Andrekson, P.A., Karlsson, M.: Power consumption analysis of hybrid EDFA/Raman amplifiers in long-haul transmission systems. J. Lightw. Technol. 35, 2132–2142 (2017)CrossRefGoogle Scholar
  13. 13.
    Sleiffer, V.A.J.M., Maalej, Z., van den Borne, D., Kuschnerov, M., Veljanovski, V., Hirano, M., Yamamoto, Y., Sasaki, T., Jansen, S.L., Napoli, A., de Waardt, H.: A comparison between SSMF and large Aeff pure silica core fiber for ultra long haul 100 G transmission. Opt. Express 19, B710–B715 (2011)CrossRefGoogle Scholar
  14. 14.
    Gnauck, A.H., Jopson, R.M., Winzer, P.J.: Demonstration of counter-propagating raman pump placed near signal-channel wavelengths. IEEE Photon. Technol. Lett. 21, 154–157 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhu, B., Peckham, D., McCurdy, A.H., Lingle, R., Palsdottir, B., Yan, M.F., Wisk, P.W., DiGiovanni, D.J.: Large-area low-loss fibers and advanced amplifiers for high-capacity long-haul optical networks. IEEE J. Opt. Commun. Netw. 8A, A55–A63 (2016)CrossRefGoogle Scholar
  16. 16.
    de Oliveira, J.R.F., de Moura, U.C., de Paiva, G.E.R., de Freitas, A.P., de Carvalho, L.H.H., Parahyba, V.E., de Oliveira, J.C., Romero, M.A.: Hybrid EDFA/Raman amplification topology for repeaterless 4.48 Tb/s (40 x 112 Gb/s DP-QPSK) transmission over 302 Km of G. 652 standard single-mode fiber. J. Lightw. Technol. 31, 2799–2808 (2013)CrossRefGoogle Scholar
  17. 17.
    Nespola, A., Straullu, S., Bosco, G., Carena, A., Yanchao, J., Poggiolini, P., Forghieri, F., Yamamoto, Y., Hirano, M., Sasaki, T., Bauwelinck, J.: 1306-km 20x124. 8-Gb/s PM-64QAM transmission over PSCF with net SEDP 11,300 (b∙ km)/s/Hz using 1.15 samp/symb DAC. Opt. Express 22, 1796–1805 (2014)CrossRefGoogle Scholar
  18. 18.
    Qian, D., Yaman, F., Huang, Y.K., Zhang, S., Mateo, E., Inoue, T., Inada, Y., Hagisawa, A., Ogata, T. Wang, T.: 512 Gb/s DP-BPSK superchannel transmission over 7200 km DMF link with 1.43 b/s/Hz spectral efficiency. In: Optical Fiber Communication Conference Optical Society of America, JTh2A-37 (2013)Google Scholar
  19. 19.
    Jiang, X., Zhu, B.: Comparison of 80 × 112-Gb/s PDM-QPSK system performance over large effective area fiber and standard SMF with Raman amplification. Opt. Express 22(10), 11620–11626 (2014)CrossRefGoogle Scholar
  20. 20.
    Xie, C., Raybon, G., Winzer, P.J.: Transmission of mixed 224-Gb∕s and 112-Gb∕s PDM-QPSK at 50-GHz channel spacing over 1200-km dispersion-managed LEAF spans and three ROADMs. J. Lightw. Technol. 30(4), 547–552 (2012)CrossRefGoogle Scholar
  21. 21.
    Huang, M.F., Tanaka, A., Ip, E., Huang, Y.K., Qian, D., Zhang, Y., Zhang, S., Ji, P.N., Djordjevic, I.B., Wang, T., Aono, Y.: Terabit/s Nyquist superchannels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats. J. Lightw. Technol. 32(4), 776–782 (2014)CrossRefGoogle Scholar
  22. 22.
    Rahman, T., Rafique, D., Napoli, A., de Man, E., Spinnler, B., Bohn, M., Okonkwo, C.M., de Koonen, A.M.J., Waardt, H.: Ultralong haul 1.28-Tb/s PM-16QAM WDM transmission employing hybrid amplification. J. Lightw. Technol. 33(9), 1794–1804 (2015)CrossRefGoogle Scholar
  23. 23.
    Dong, Z., Li, X., Yu, J., Chi, N.: 6 × 128-Gb/s Nyquist-WDM PDM-16QAM generation and transmission over 1200-km SMF-28 with SE of 7.47 b/s/Hz. J. Lightw. Technol. 30(24), 4000–4005 (2012)CrossRefGoogle Scholar
  24. 24.
    Silva, E., Carvalho, L., Franciscangelis, C., Diniz, J., Bordonalli, A., Oliveira, J.: Spectrally-efficient 448-Gb∕s dual-carrier PDM-16QAM channel in a 75-GHz grid. In: Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf. (OFC/NFOEC), OSA, JTh2A.39 (2013)Google Scholar
  25. 25.
    Sharma, D., Prajapati, Y.K., Tripathi, R.: Spectrally efficient 1.55 Tb/s Nyquist-WDM superchannel with mixed line rate approach using 27.75 Gbaud PM-QPSK and PM-16QAM. Opt. Eng. 57(7), 076102-1–076102-6 (2018)CrossRefGoogle Scholar
  26. 26.
    Sharma, D., Prajapati, Y.K., Tripathi, R.: Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Techn. Rev. 29, 1–20 (2018)CrossRefGoogle Scholar
  27. 27.
    Devi, S., Sharma, D., Prajapati, Y. K.: 5 × 222 Gb/s PM-16QAM Nyquist-WDM superchannel. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3351800
  28. 28.
    Goyal, S., Kaler, R.S., Singh, H.: Crosstalk estimation of 21.12 Tb/S Nyquist superchannels with hybrid modulation using trench-assisted multicore fibre. IET Optoelectron. 13(5), 218–223 (2019)CrossRefGoogle Scholar
  29. 29.
    Rapp, L.: Performance limits of unrepeatered systems using higher-order codirectional Raman pumping. AEU-Int. J. Electron. Commun. 67, 616–623 (2013)CrossRefGoogle Scholar
  30. 30.
    Faruk, M.S., Savory, S.J.: Digital signal processing for coherent transceivers employing multilevel formats. J. Lightw. Technol. 35, 1125–1141 (2017)CrossRefGoogle Scholar
  31. 31.
    Zeng, Z., Yang, A., Guo, P., Feng, L.: Weighted finite impulse response filter for chromatic dispersion equalization in coherent optical fiber communication systems. In: International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing, pp 10617 (2018)Google Scholar
  32. 32.
    Xu, T.: Digital signal processing for optical communications and networks I: linear compensation. Ar Xiv preprint ar Xiv:1705.05284 (2017)Google Scholar
  33. 33.
    Savory, S.J., Gavioli, G., Killey, R.I., Bayvel, P.: Electronic compensation of chromatic dispersion using a digital coherent receiver. Opt. Express 15, 2120–2126 (2007)CrossRefGoogle Scholar
  34. 34.
    Lima, I.T., DeMenezes, T.D., Grigoryan, V.S., Osullivan, M., Menyuk, C.R.: Nonlinear compensation in optical communications systems with normal dispersion fibers using the nonlinear fourier transform. J. Lightw. Technol. 35, 5056–5068 (2017)CrossRefGoogle Scholar
  35. 35.
    Miglani, R., Malhotra, J.S.: Performance enhancement of high-capacity coherent DWDM free-space optical communication link using digital signal processing. In: Photonic Network Communications, pp. 1–17 (2019).  https://doi.org/10.1007/s11107-019-00866-8 CrossRefGoogle Scholar
  36. 36.
    Singh, A., Sharma, D., Prajapati, Y.K.: Comparison of DPSK and QAM modulation schemes in passive optical network. In: International Conference on Fibre Optics and Photonics. Optical Society of America, Tu4A-56 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.Electronics and Communication Engineering DepartmentMotilal Nehru National Institute of Technology AllahabadPrayagrajIndia

Personalised recommendations