Advertisement

Photonic Network Communications

, Volume 38, Issue 3, pp 326–342 | Cite as

Performance enhancement of high-capacity coherent DWDM free-space optical communication link using digital signal processing

  • Rajan MiglaniEmail author
  • Jagjit Singh Malhotra
Original Paper

Abstract

In this paper, 1.28 Tbps (32 × 40 Gbps) high-capacity DWDM-FSO link has been investigated for performance enhancement using coherent detection and digital signal processing (DSP). The DP-16QAM-modulated proposed DWDM-FSO link has been analyzed for both adverse weather and turbulent atmospheric conditions. It is observed that when link is subjected to strong turbulence along with adverse weather conditions, the DSP-aided coherent DWDM-FSO receiver achieves target bit error rate (BER) of 10−4 at signal-to-noise ratio (SNR) of 36.4 dB, while for similar conditions, the SNR requirements for IM/DD-based DWDM-FSO link shoots by 12.8 dB to 49.2 dB. Also, in terms of operational link range, the proposed link even under strong turbulent conditions serves 1.88 km, whereas IM/DD link was restricted to mere 1.12 km for target of BER of 10−4, thus producing a decent range increment of 760 m. The proposed link has been designed and investigated using OptiSystem™ 14.2.

Keywords

Free-space optical communication Coherent detection Digital signal processing DWDM Atmospheric turbulence Gamma–Gamma channel modeling 

Notes

Acknowledgements

The authors gratefully acknowledge the Department of Electronics and Communication Engineering, D.A.V Institute of Engineering and Technology and I. K. Gujral Punjab Technical University, India, for providing the necessary infrastructure and facilities for this research work. We are also thankful to anonymous reviewers for their invaluable comments and suggestions which have helped to improve the manuscript.

References

  1. 1.
    Majumdar, A.K.: Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005)CrossRefGoogle Scholar
  2. 2.
    Arnon, S., Barry, J.R., Karagiannidis, G.K., Schober, R., Uysal, M. (eds.): Advanced Optical Wireless Communication. Cambridge University Press, Cambridge (2012)Google Scholar
  3. 3.
    Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRefGoogle Scholar
  4. 4.
    Kaushal, H., Jain, V.K., Kar, S.: Free space optical communication, 1st edn. In: Mukherjee, B. (ed.) Optical Networks. Springer, Berlin (2017).  https://doi.org/10.1007/978-81-322-3691-7 CrossRefGoogle Scholar
  5. 5.
    Kedar, D., Arnon, S.: Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Commun. Mag. 42(5), 2–7 (2004)CrossRefGoogle Scholar
  6. 6.
    Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media, vol. 152. Society of Photo Optical, Bellingham (2005)CrossRefGoogle Scholar
  7. 7.
    Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics. J. Opt. Netw. 2, 178–200 (2003)CrossRefGoogle Scholar
  8. 8.
    Miglani, R., Malhotra, J.: Statistical analysis of FSO links employing multiple transmitter/receiver strategy over double-generalized and Gamma–Gamma fading channel using different modulation techniques. J. Opt. Commun. 40, 295–305 (2018)CrossRefGoogle Scholar
  9. 9.
    Navidpour, S.M., Uysal, M., Kavehrad, M.: BER performance of free space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007)CrossRefGoogle Scholar
  10. 10.
    Stassinakis, A.N., Nistazakis, H.E., Tombras, G.S.: Comparative performance study of one or multiple receivers schemes for FSO links over Gamma Gamma turbulence channels. J. Mod. Opt. 59(11), 1023–1031 (2012)CrossRefGoogle Scholar
  11. 11.
    Tsiftsis, T.A., Sandalidis, H.G., Karagiannidis, G.K., Uysal, M.: Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 8(2), 951–957 (2009)CrossRefGoogle Scholar
  12. 12.
    Nistazakis, H.E., Tombras, G.S.: On the use of wavelength and time diversity in optical wireless communication systems over Gamma–Gamma turbulence channels. J. Opt. Laser Technol. 44(7), 2088–2094 (2012)CrossRefGoogle Scholar
  13. 13.
    Balaji, K.A., Prabu, K.: Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors. Opt. Commun. 410, 643–651 (2018)CrossRefGoogle Scholar
  14. 14.
    Sharma, V., Sushank.: High speed CO-OFDM-FSO transmission system. Optik Int. J. Light Electron Opt. 125, 1761–1763 (2014)CrossRefGoogle Scholar
  15. 15.
    Badar, N., Jha, R.K., Towfeeq, I.: Performance analysis of an 80 (8 × 10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma–Gamma fading model. Opt. Quant. Electron. 50, 44 (2018)CrossRefGoogle Scholar
  16. 16.
    Safari, M., Rad, M.M., Uysal, M.: Multi-hop relaying over the atmospheric Poisson channel: outage analysis and optimization. IEEE Trans. Commun. 60(3), 817–829 (2012)CrossRefGoogle Scholar
  17. 17.
    Karagiannidis, G., Tsiftsis, T., Sandalidis, H.: Outage probability of relayed free space optical communication systems. Electron. Lett. 42(17), 994–996 (2006)CrossRefGoogle Scholar
  18. 18.
    Safari, M., Uysal, M.: Relay-assisted free-space optical communication. IEEE Trans. Wirel. Commun. 7(12), 5441–5449 (2008)CrossRefGoogle Scholar
  19. 19.
    Hsu, H., Lu, W.C., Minh, H.L., Ghassemlooy, Z., Yu, Y., Liaw, S.: 2 × 80 Gbit/s DWDM bidirectional wavelength reuse optical wireless transmission. IEEE Photonics J. 5(4), 7901708 (2013)CrossRefGoogle Scholar
  20. 20.
    Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., D’Errico, A., Guarino, V., Matsumoto, M.: 1.28 terabit/s (32 × 40 Gbit/s) WDM transmission system for free space optical communications. IEEE J. Sel. Areas Commun. 27(9), 1639–1645 (2009)CrossRefGoogle Scholar
  21. 21.
    Seimetz, M.: Performance of coherent optical square-16-QAM-systems based on IQ-transmitters and homodyne receivers with digital phase estimation. In: Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest, Optical Society of America (2006)Google Scholar
  22. 22.
    Yoshida, M., Goto, H., Kasai, K., Nakazawa, M.: 64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection. Opt. Express 16, 829–840 (2008)CrossRefGoogle Scholar
  23. 23.
    Mehra, M., Sadawarti, H., Singh, M.L.: Performance analysis of coherent optical communication system for higher order dual polarization modulation formats. Optik (Stuttg) 135, 174–179 (2017).  https://doi.org/10.1016/j.ijleo.2017.01.034 CrossRefGoogle Scholar
  24. 24.
    Li, L., et al.: Free-space optical communication using coherent detection and double adaptive detection thresholds. IEEE Photonics J. 11(1), 1–17 (2019)Google Scholar
  25. 25.
    Liu, Wei, Yao, Kainan, Huang, Danian, Cao, Jingtai, Wang, Liang, Haijun, Gu: BER analysis of coherent free space optical communication systems with holographic modal wavefront sensor. Curr. Opt. Photon. 1, 1–6 (2017)CrossRefGoogle Scholar
  26. 26.
    Malik, A., Singh, P.: Comparative analysis of point to point FSO system under clear and haze weather conditions. Wirel. Pers. Commun. 80, 483–492 (2015)CrossRefGoogle Scholar
  27. 27.
    Grover, M., Singh, P., Kaur, P., et al.: Multibeam WDM-FSO system: an optimum solution for clear and hazy weather conditions. Wirel. Pers. Commun. 97, 5783 (2017).  https://doi.org/10.1007/s11277-017-4810-2 CrossRefGoogle Scholar
  28. 28.
    Singh, M.: Performance analysis of WDM-FSO system under adverse weather conditions. Photon Netw. Commun. 36, 1 (2018).  https://doi.org/10.1007/s11107-018-0763-y CrossRefGoogle Scholar
  29. 29.
    Miglani, R., Malhotra, J.S.: Evaluation of link-compensated 32 × 40 Gbit/s DWDM free space optical (FSO) transmission. J. Opt. (Springer) 47(4), 467–474 (2018).  https://doi.org/10.1007/s12596-018-0484-8 CrossRefGoogle Scholar
  30. 30.
    Kakati, Dhiman, Arya, Subhash C.: A full-duplex optical fiber/wireless coherent communication system with digital signal processing at the receiver. Optik 171, 190–199 (2018)CrossRefGoogle Scholar
  31. 31.
    Kakati, D., Arya, S.C.: Performance of 120 Gbps single channel coherent DP-16-QAM in terrestrial FSO link under different weather conditions. Optik (2018).  https://doi.org/10.1016/j.ijleo.2018.10.035 CrossRefGoogle Scholar
  32. 32.
    Kahn, J.M., Ho, K.P.: Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004)CrossRefGoogle Scholar
  33. 33.
    Ly-Gagnon, D.-S., Katoh, K., Kikuchi, K.: Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal processing OFC, Anaheim, paper OTuL4 (2005)Google Scholar
  34. 34.
    Camatel, S., Ferrero, V., Gaudino, R., Poggiolini, P.: 10 Gbit/s 2-PSK transmission and homodyne coherent detection using commercial optical components. Proceedings, Rimini, paper We4.P.122 (2003)Google Scholar
  35. 35.
    Tang, X., Ghassemlooy, Z., Rajbhandari, S., Popoola, W.O., Lee, C.G.: Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel. IET Microw. Antennas Propag. 5(9), 1031–1038 (2011)CrossRefGoogle Scholar
  36. 36.
    Pfau, T., Hoffmann, S., Noe, R.: Hardware-efficient coherent digital receiver concept with feed-forward carrier recovery for M-QAM constellations. J. Lightwave Technol. 27(8), 989–999 (2009)CrossRefGoogle Scholar
  37. 37.
    Temprana, E., Kuo, B.P.-P., Alic, N., Radic, S., Grubb, S.: 400 Gb/s WDM DP-256-QAM transmission with 50 GHz channel separation. In: Proceedings of IEEE Photonics Conference (2016)Google Scholar
  38. 38.
    Okamoto, S., et al.: Field trial of distance-adaptive optical transmission with digital in-band OSNR estimation. Opt. Express 24(20), 22403–22412 (2016)CrossRefGoogle Scholar
  39. 39.
    Kim, J., Johnson, W.B., Kanakaraju, S., Herman, W.N., Lee, C.H.: Demonstration of balanced coherent detection using polymer optical waveguide integrated distributed traveling-wave photodetectors. Opt. Express 17, 20242–20248 (2009)CrossRefGoogle Scholar
  40. 40.
    Badar, N., Jha, R.K.: Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model. Opt. Quant. Electron. 49, 192 (2017).  https://doi.org/10.1007/s11082-017-1025-4 CrossRefGoogle Scholar
  41. 41.
    Immadi, G., Venkata Narayana, M., Kotamraju, S.K., et al.: Estimating the performance of free space optical link under adverse weather conditions by using various models. Wirel. Pers. Commun. (2018).  https://doi.org/10.1007/s11277-018-5870-7 CrossRefGoogle Scholar
  42. 42.
    Rashidi, F., He, J., Chen, L.: Performance investigation of FSO–OFDM communication systems under the heavy rain weather. J. Opt. Commun. 39, 37–42 (2016)Google Scholar
  43. 43.
    Rashidi, Florence, He, Jing, Chen, Lin: Spectrum slicing WDM for FSO communication systems under the heavy rain weather. Opt. Commun. 387, 296–302 (2017)CrossRefGoogle Scholar
  44. 44.
    Alnajjar, S.H., Noori, A.A., Moosa, A.A.: Enhancement of FSO communications links under complex environment. Photonic Sens. 7(2), 113–122 (2017)CrossRefGoogle Scholar
  45. 45.
    Savory, S.J.: Digital filters for coherent optical receivers. Opt. Express 16, 804–817 (2008)CrossRefGoogle Scholar
  46. 46.
    Fatadin, I., Ives, D., Savory, S.J.: Blind equalization and carrier phase recovery in a 16-QAM optical coherent system. J. Lightw. Technol. 27(15), 3042–3049 (2009)CrossRefGoogle Scholar
  47. 47.
    Sethares, W.A., Rey, G.A., Johnson, C.R.: Approaches to blind equalization of signals with multiple modulus. Proc. Int. Conf. Acoust. Speech Signal Process. 2, 972–975 (1989)CrossRefGoogle Scholar
  48. 48.
    Ciblat, P., Vandendorpe, L.: Blind carrier frequency offset estimation for non-circular constellation based transmission. IEEE Trans. Signal Process. 51(5), 1378–1389 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Pincemin, E., et al.: Novel blind equalizer for coherent DP-BPSK transmission systems: theory and experiment. IEEE Photon. Technol. Lett. 25, 1835 (2013)CrossRefGoogle Scholar
  50. 50.
    Sharma, M., Chadha, D., Chandra, V.: Performance analysis of MIMO–OFDM free space optical communication system with low-density parity-check code. Photon Netw. Commun. 32(1), 104–114 (2016)CrossRefGoogle Scholar
  51. 51.
    Chaudhary, S., Amphawan, A.: High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes. Photon Netw. Commun. 35, 374–380 (2018)CrossRefGoogle Scholar
  52. 52.
    Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q., et al.: Hybrid WDM/multibeam free-space optics for multigigabit access network. Photon Netw. Commun. 29, 138–145 (2015)CrossRefGoogle Scholar
  53. 53.
    Krishnan, P., Jha, G.K., Walia, A.: Performance enhancement of BPSK-SIM- and DPSK-SIM-based FSO downlink over atmospheric turbulence using aperture averaging and receiver diversity. Photon Netw. Commun. (2019).  https://doi.org/10.1007/s11107-019-00836-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.I. K. Gujral Punjab Technical UniversityJalandharIndia
  2. 2.DAVIETJalandharIndia

Personalised recommendations