Advertisement

Photonic Network Communications

, Volume 38, Issue 3, pp 356–377 | Cite as

Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata

  • Saeed Rasouli HeikalabadEmail author
  • Hamed Kamrani
Original Paper
  • 39 Downloads

Abstract

Quantum-dot cellular automata (QCA) is a nanoscale technology to design digital circuits in nano-measure which acts based on electron’s interaction. The technology of collecting, processing and distributing information is growing rapidly, but the growth in demand for advanced methods in data processing has always been greater than the speed of growth of these technologies. Hence, computer networks play an important role in providing a resource sharing and facilitating user communications. The circuit-switched network is one of the main components for sending input signals between different users within the network. In this paper, a minimal and optimal design of the circuit-switched network is presented at a single level in QCA. The proposed design is studied and compared with existing designs in terms of fault tolerant under stuck-at 0 and 1. There is also a physical analysis for the proposed circuit-switched network.

Keywords

Nanotechnology Circuit-switched network Quantum-dot cellular automata Fault tolerant Kink energy 

Notes

References

  1. 1.
    Ahmadpour, S., Mosleh, M., Heikalabad, S.R.: Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int. J. Circ. Theor. App. 47(7), 1037–1056 (2019)CrossRefGoogle Scholar
  2. 2.
    Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photonic Netw. Commun. (2019).  https://doi.org/10.1007/s11107-019-00850-2 CrossRefGoogle Scholar
  3. 3.
    Nejad, M.Y., Mosleh, M., Heikalabad, S.R.: An LSB-based quantum audio watermarking using MSB as arbiter. Int. J. Theor. Phys. (2019).  https://doi.org/10.1007/s10773-019-04251-z CrossRefGoogle Scholar
  4. 4.
    Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  5. 5.
    Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)CrossRefGoogle Scholar
  6. 6.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of anultra-area-efficientfault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)CrossRefGoogle Scholar
  7. 7.
    Milad, B., Mahya, S., Alireza, A., Keivan, N., Nader, B.: A 3D universal structure based on molecular-QCA and CNT technologies. J. Mol. Struct. 1119(5), 86–95 (2016).  https://doi.org/10.1016/j.molstruc.2016.04.025 CrossRefGoogle Scholar
  8. 8.
    Mohammad, M., Majid, M., Saeid, G.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016).  https://doi.org/10.1016/j.mejo.2016.02.004 CrossRefGoogle Scholar
  9. 9.
    Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Midpoint memory: a special memory structure for data-oriented models implementation. J. Circuits Syst. Comput. 24(5), 1550063 (2015)CrossRefGoogle Scholar
  10. 10.
    Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)CrossRefGoogle Scholar
  11. 11.
    Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt. Int. J. Light Electron. Opt. (2017).  https://doi.org/10.1016/j.ijleo.2016.11.087 CrossRefGoogle Scholar
  12. 12.
    Karkaj, E.T., Heikalabad, S.R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. (2016).  https://doi.org/10.1016/j.spmi.2016.08.054 CrossRefGoogle Scholar
  13. 13.
    Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. (2017).  https://doi.org/10.1007/s00542-017-3502-x CrossRefGoogle Scholar
  14. 14.
    Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without crosswiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. (2017).  https://doi.org/10.1007/s11227-017-2206-4 CrossRefGoogle Scholar
  15. 15.
    Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2848 (2017).  https://doi.org/10.1007/s10773-017-3453-0 CrossRefzbMATHGoogle Scholar
  16. 16.
    Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2990 (2017).  https://doi.org/10.1007/s10773-017-3466-8 CrossRefzbMATHGoogle Scholar
  17. 17.
    Sadoghifar, A., Heikalabad, S.R.: A content-addressable memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys. B Condens. Matter 537, 202–206 (2018).  https://doi.org/10.1016/j.physb.2018.02.024 CrossRefGoogle Scholar
  18. 18.
    Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum dot cellular automata to create a revolution. Phys. B Condens. Matter 512, 91–99 (2017).  https://doi.org/10.1016/j.physb.2017.02.028 CrossRefGoogle Scholar
  19. 19.
    Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs 66, 963–967 (2018)CrossRefGoogle Scholar
  20. 20.
    Salimzadeh, F., Heikalabad, S.R.: Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys. B Phys. Condens. Matter (2018).  https://doi.org/10.1016/j.physb.2018.12.028 CrossRefGoogle Scholar
  21. 21.
    Heikalabad, S.R., Gadim, M.R.: Design of improved arithmetic logic unit in quantum-dot cellular automata. Int. J. Theor. Phys. 57(6), 1733–1747 (2018).  https://doi.org/10.1007/s10773-018-3699-1 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kamrani, S., Heikalabad, S.R.: A unique reversible gate in quantum-dot cellular automata for implementation of four flip-flops without garbage outputs. Int. J. Theor. Phys. 57(11), 3340–3358 (2018).  https://doi.org/10.1007/s10773-018-3847-7 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ahmadpour, S.S., Mosleh, M., Heikalabad, S.R.: A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys. B 550, 383–392 (2018).  https://doi.org/10.1016/j.physb.2018.09.029 CrossRefGoogle Scholar
  24. 24.
    Mariam, Z., Keivan, N.: Ultra-area-efficient reversible multiplier. Microelectron. J. 43(6), 377–385 (2012).  https://doi.org/10.1016/j.mejo.2012.02.004 CrossRefGoogle Scholar
  25. 25.
    Basu, S.: Realization of combinational multiplier using quantum cellular automata. Int. J. Comput. Appl. 99(19), 1–6 (2014)Google Scholar
  26. 26.
    Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009).  https://doi.org/10.1109/TC.2009.21 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dharmendra, K., Debasis, M.: Design of a practical fault-tolerant adder in QCA. Microelectron. J. 53, 90–104 (2016).  https://doi.org/10.1016/j.mejo.2016.04.004 CrossRefGoogle Scholar
  28. 28.
    Trailokya, N., Ashutosh, K., Anand, M.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt. Int. J. Light Electron Opt. 127(20), 8576–8591 (2016).  https://doi.org/10.1016/j.ijleo.2016.06.034 CrossRefGoogle Scholar
  29. 29.
    Firdous, A.G., Hossein, K., Saeid, A., Shaahin, A., Keivan, N.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016).  https://doi.org/10.1016/j.jocs.2016.02.005 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J Comput Syst Sci. 80(7), 1404–1414 (2014).  https://doi.org/10.1016/j.jcss.2014.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Netw. (2017).  https://doi.org/10.1016/j.nancom.2017.09.002 CrossRefGoogle Scholar
  32. 32.
    Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter 521, 162–167 (2017)CrossRefGoogle Scholar
  33. 33.
    Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: on the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016)CrossRefGoogle Scholar
  34. 34.
    Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018).  https://doi.org/10.1016/j.mee.2018.01.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Industrial Nanotechnology Research Center, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations