Advertisement

320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach–Zehnder interferometer and delayed interferometer

  • Amer KotbEmail author
  • Kyriakos E. Zoiros
  • Chunlei GuoEmail author
Original Paper
  • 24 Downloads

Abstract

All-optical exclusive OR (XOR) gate with semiconductor optical amplifier (SOA)-Mach–Zehnder interferometer (MZI) and delayed interferometer (DI) is demonstrated at 320 Gb/s through numerical simulation and analysis. The performance of the XOR gate is investigated and evaluated against the quality factor (QF). The obtained results indicate that placing the DI in series with the SOA-MZI renders acceptable QF of the XOR outcome at the target data rate, as opposed to the case without the DI, where the achievement of the same goal is not possible.

Keywords

All-optical XOR gate Semiconductor optical amplifier Mach–Zehnder interferometer Delayed interferometer 

Notes

References

  1. 1.
    Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)CrossRefGoogle Scholar
  2. 2.
    Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31, 3813–3821 (2013)CrossRefGoogle Scholar
  3. 3.
    Patel, N.S., Hall, K.L., Rauschenbach, K.A.: Interferometric all-optical switches for ultrafast signal processing. Appl. Opt. 37, 2831–2842 (1998)CrossRefGoogle Scholar
  4. 4.
    Zhang, M., Wang, L., Ye, P.: All-optical XOR logic gates: technologies and experiment demonstrations. IEEE Commun. Mag. 43, S19–S24 (2005)CrossRefGoogle Scholar
  5. 5.
    Mørk, J., Nielsen, M.L., Berg, T.W.: The dynamics of semiconductor optical amplifiers: Modeling and applications. Opt. Photon. News 14, 42–48 (2003)CrossRefGoogle Scholar
  6. 6.
    Sun, H., Wang, Q., Dong, H., Chen, Z., Dutta, N.K., Jaques, J., Piccirilli, A.B.: All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quantum Electron. 42, 747–751 (2006)CrossRefGoogle Scholar
  7. 7.
    Randel, S., Melo, A.M., Petermann, K., Marembert, V., Schubert, C.: Novel scheme for ultrafast all-optical XOR operation. J. Lightwave Technol. 22, 2808–2815 (2004)CrossRefGoogle Scholar
  8. 8.
    Zoiros, K.E., Demertzis, C.: On the data rate extension of semiconductor optical amplifier-based ultrafast nonlinear interferometer in dual rail switching mode using a cascaded optical delay interferometer. Opt. Laser Technol. 43, 1190–1197 (2011)CrossRefGoogle Scholar
  9. 9.
    Gutiérrez-Castrejón, R., Dülk, M., Fischer, S., Guekos, G.: Novel scheme for optical time-division demultiplexing using a delayed interferometer. Opt. Commun. 192, 245–254 (2001)CrossRefGoogle Scholar
  10. 10.
    Kotb, A.: All-optical Logic Gates Using Semiconductor Optical Amplifier. Lambert Academic Publishing, Saarbrucken (2012)Google Scholar
  11. 11.
    Kotb, A., Zoiros, K.E., Guo, C.: 160 Gb/s photonic crystal semiconductor optical amplifiers-based all-optical logic NAND gate. Photon Netw. Commun. 36, 246–255 (2018)CrossRefGoogle Scholar
  12. 12.
    Breuer, D., Petermann, K.: Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems. IEEE Photon. Technol. Lett. 9, 398–400 (1997)CrossRefGoogle Scholar
  13. 13.
    Kawanishi, S.: Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE J. Quantum Electron. 34, 2064–2079 (1998)CrossRefGoogle Scholar
  14. 14.
    Zhu, G., Wang, Q., Chen, H., Dong, H., Dutta, N.K.: High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser. IEEE J. Quantum Electron. 40, 721–725 (2004)CrossRefGoogle Scholar
  15. 15.
    Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)CrossRefGoogle Scholar
  16. 16.
    Kotb, A., Zoiros, K.E., Guo, C.: All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules. Opt. Laser Technol. 108, 426–433 (2018)CrossRefGoogle Scholar
  17. 17.
    Vardakas, J.S., Zoiros, K.E.: Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot filter and SOA-assisted Sagnac switch. Opt. Eng. 46, 085005 (2007)CrossRefGoogle Scholar
  18. 18.
    Zoiros, K.E., Siarkos, T., Koukourlis, C.S.: Theoretical analysis of pattern effect suppression in semiconductor optical amplifier utilizing optical delay interferometer. Opt. Commun. 281, 3648–3657 (2008)CrossRefGoogle Scholar
  19. 19.
    Mulvad, H.C.H., Galili, M., Oxenløwe, L.K., Hu, H., Clausen, A.T., Jensen, J.B., Peucheret, C., Jeppesen, P.: Demonstration of 5.1 Tb/s data capacity on a single-wavelength channel. Opt. Express 18, 1438–1443 (2010)CrossRefGoogle Scholar
  20. 20.
    Zimmerman, D.R., Spiekman, L.H.: Amplifiers for the masses: EDFA, EDWA, and SOA amplest for metro and access applications. J. Lightwave Technol. 22, 63–70 (2004)CrossRefGoogle Scholar
  21. 21.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Guo China-US Photonics LaboratoryChangchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of SciencesChangchunChina
  2. 2.Department of Physics, Faculty of ScienceUniversity of FayoumFayoumEgypt
  3. 3.Lightwave Communications Research Group, Department of Electrical and Computer Engineering, School of EngineeringDemocritus University of ThraceXanthiGreece
  4. 4.The Institute of Optics, University of RochesterRochesterUSA

Personalised recommendations