Advertisement

Cover and iterative learning control for and decryption in secure communication

  • Jianhuan Su
  • Yinjun ZhangEmail author
  • Mengji Chen
Original Paper
  • 7 Downloads

Abstract

Typical cover techniques adopted in the conventional secure communication schemes are the additive masking and modulation by multiplication. In order to enhance security, in this paper, the new masking and decryption methods were given by iterative learning control algorithm for secure communication. In order to enhance security, the paper proposed the nonlinear masking method to apply to the traditional items and used the iterative learning control algorithm to decrypt. The algorithm reconstructed the information signal completely and analyzed the robustness and convergence of learning algorithm about the initial error and output error. The convergence conditions were given and the simulations shown in the algorithm can reconstruct the signal in secure communication.

Keywords

Secure communication Nonlinear masking Iterative learning control algorithm 

Notes

Acknowledgements

The work was supported by the Hechi University Key Projection Foundation (XJ2016ZD004), the Hechi University for Youth teacher Foundation (XJ2017QN08), the Projection of Environment Master Foundation (2017HJA001, 2017HJB001), the key Project of the new century teaching reform Project in Guangxi (2010JGZ033) and the Promotion program for young teachers Foundation in University of Guang Xi (2018KY0495).

Authors’ Contribution

Yinjun Zhang is the corresponding author of the paper. Menji Chen contributed the idea of the paper. Jianhuan Su did the simulation.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Richardson, R.: CSI computer crime and security survey at 19.i.cmpnet.com (2008)Google Scholar
  2. 2.
    Li, Y., Dhotre, N.S., Ohara, Y., Kroeger, T.M., Miller, E.L., Long, D.D.E.: Horus: fine-grained encryption-based security for large-scale storage (PDF). www.ssrc.ucsc.edu. Discussion of encryption weaknesses for petabyte scale datasets
  3. 3.
    Corron, N.J., Hahs, D.W.: A new approach to communications using chaotic signals. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(5), 373–382 (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communication. Phys. Prev. Lett. 74(25), 5028–5031 (1995)CrossRefGoogle Scholar
  5. 5.
    Yang, T., Wu, C.W., Chua, L.O.: Cryptography based on chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(5), 469–472 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Nijmeijer, H., Mareels, I.M.Y.: An observer looks at synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 882–890 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Huijberts, H., Nijmeijer, H., Willems, R.: System identification in communication with chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(6), 800–808 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. J. Robot. Syst. 1(2), 123–140 (1984)CrossRefGoogle Scholar
  9. 9.
    Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. IEEE Control Syst. Mag. 26(3), 96–114 (2006)CrossRefGoogle Scholar
  10. 10.
    Sun, M.X., Wang, D.W.: Closed-loop iterative learning control for non-linear systems with initial shifts. Int. J. Adapt. Control Signal Process. 16(7), 515–538 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, D.P., Xu, J.X., Venkataramanan, V., Huynh, T.C.T.: High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Trans. Ind. Electron. 61(2), 1085–1098 (2014)CrossRefGoogle Scholar
  12. 12.
    Sun, M.X.: Chaotic communication systems: an iterative learning perspective. In: Proceedings of the International Conference on Electrical and Control Engineering, pp. 573–577. IEEE, Wuhan (2010)Google Scholar
  13. 13.
    Feldmann, U., Hasler, M., Schwaz, W.: Communication by chaotic signals: the inverse system approach. Int. J. Circuit Theory Appl. 24(5), 551–579 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhou, H., Ling, X.T.: Problems with the chaotic inverse system encryption approach. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(3), 268–271 (1997)CrossRefGoogle Scholar
  15. 15.
    Zheng, Y., Chen, G.R., Zhu, C.Y.: A system inversion approach to chaos-based secure speech communication. Int. J. Bifurc. Chaos 15(8), 2569–2582 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lü, J.H., Chen, G.R., Cheng, D.Z., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Prev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71(1), 65–68 (1993)CrossRefGoogle Scholar
  19. 19.
    Chen, G.R., Dong, X.N.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Ann. Rev. Control 29(1), 33–56 (2005)CrossRefGoogle Scholar
  21. 21.
    Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(9), 817–819 (1996)CrossRefGoogle Scholar
  22. 22.
    Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel R.A. (ed.) Advances in Cryptology—EUROCRYPT’ 92. EUROCRYPT 1992. Lecture Notes in Computer Science, vol 658. Springer, Berlin, Heidelberg (1992)Google Scholar
  23. 23.
    Matsui, M.: The first experimental cryptanalysis of the data encryption standard. In: Desmedt Y.G. (eds.) Advances in Cryptology—CRYPTO’ 94. CRYPTO 1994. Lecture Notes in Computer Science, vol 839. Springer, Berlin, Heidelberg (1994)Google Scholar
  24. 24.
    Matsui, M.: Linear cryptanalysis method for DES cipher (PDF). In: Advances in Cryptology—EUROCRYPT 1993. Archived from the original (PDF) on 2007-09-26. Retrieved 22 Feb. 2007Google Scholar
  25. 25.
    Singh, S.: The Code Book, pp. 14–20. Anchor Books, New York (2000)Google Scholar
  26. 26.
    Al-Kadi, I.A.: The origins of cryptology: the Arab contributions. Cryptologia 16(2), 97–126 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schrödel, T.: Breaking short Vigenère Ciphers. Cryptologia 32(4), 334–337 (2008)CrossRefGoogle Scholar
  28. 28.
    Mingxuan, Sun: Iterative Learning Control. National Defense Press, Beijing (1999)zbMATHGoogle Scholar
  29. 29.
    Chua, L.O., Kocarev, Lj, Eckert, K., Itoh, M.: Experimental chaos synchronization in Chua’s circuit. Int. J. Bifurc. Chaos 2, 705–708 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Electrical EngineeringHechi UniversityYizhouChina
  2. 2.Aeronautics and Astronautics Engineering InstituteAir Force Engineering UniversityXi’anChina

Personalised recommendations