Advertisement

A comprehensive optical mobile fronthaul network toward high-fidelity, flexible and low-latency transport

  • Weisheng HuEmail author
  • Hao He
  • Kuo Zhang
  • Haiyun Xin
  • Longsheng Li
  • Ahmed Mohammed Mikaeil
Invited Paper
  • 38 Downloads

Abstract

Cloud radio access network and the subsequent next-generation fronthaul interface are the key solutions for the upcoming 5G deployment. In both architectures, the baseband units (BBUs) are centralized, and remote radio units (RRUs) are separately allocated, where the BBUs and RRUs are connected through a fronthaul network with common public radio interface (CPRI) and its subsequent eCPRI. Today, a cost-effective fronthaul transport network is paramount for 5G deployment. In this paper, we proposed a comprehensive optical mobile fronthaul network (COMF) to meet the various fronthaul requirements. The COMF design has the features of low-cost high-speed transmission, bandwidth reduction, low link latency, high signal fidelity and flexible connection. To support both the CPRI and eCPRI interfaces, several low-cost high-bitrate optical transmission techniques are comparatively studied. Meanwhile, time-division multiplexing-based analog radio over fiber solution is also discussed. Furthermore, to achieve flexible fronthaul delivering, optical switching technologies based on arrayed waveguide grating router and wavelength selective switch are presented, respectively. In the end, the novel strategies for low-delay resource management are investigated.

Keywords

Fronthaul CPRI eCPRI ARoF PON Optical switch DBA 

Notes

Acknowledgements

The authors would like to thank Xin Miao, Yan Fu, Wei Wang, and for their technical information. This work was jointly supported by NSFC (61431009 and 61521062).

References

  1. 1.
    Chin-Lin, I., Huang, J., Duan, R., Cui, C., Jiang, J.X. Recent Progress on C-RAN Centralization and Cloudification. IEEE Access 2, 1030–1039 (2014)CrossRefGoogle Scholar
  2. 2.
    Pfeiffer, T.: Next generation mobile fronthaul and midhaul architectures. J. Opt. Commun. Netw. 7(11), 2456–2464 (2015)CrossRefGoogle Scholar
  3. 3.
    Pizzinat, A., Chanclou, P., Saliou, F., Diallo, T.: Things you should know about fronthaul. J. Lightwave Technol. 33(5), 1077–1083 (2015)CrossRefGoogle Scholar
  4. 4.
    Li, Z., Yi, L., Wang, X., Hu, W.: 28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON. Opt. Express 23(16), 20249–20256 (2015)CrossRefGoogle Scholar
  5. 5.
    Ye, Z., Li, S., Cheng, N., Liu, X.: Demonstration of high performance cost-effective 100-Gb/s TWDM-PON using 4 × 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization. In: European Conference on Optical Communication (2015)Google Scholar
  6. 6.
    Galve, J.M., Gasulla, I., Sales, S., Capmany, J.: Reconfigurable radio access networks using multicore fibers. IEEE/OSA J. Quantum Electron. 52(1), 1–7 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Ji, Y., Jia, S., Li, H., Yu, X., Wang, X.: Reconfigurable optical mobile fronthaul networks for coordinated multipoint transmission and reception in 5G. J. Opt. Commun. Netw. 9(6), 489–497 (2017)CrossRefGoogle Scholar
  8. 8.
    Cvijetic, N., Tanaka, A., Kanonakis, K., Wang, T.: SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era. Opt. Express 22(17), 20809–20815 (2014)CrossRefGoogle Scholar
  9. 9.
    CPRI Specification V7.0: Common Public Radio Interface (CPRI); Interface Specification (2015)Google Scholar
  10. 10.
    eCPRI Specification V1.1: Common Public Radio Interface: eCPRI Interface Specification (2018)Google Scholar
  11. 11.
    Ammar, D., Begin, T. Guerin-Lassous, I.: A new tool for generating realistic internet traffic in ns-3. In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques (2011)Google Scholar
  12. 12.
    Paul, U., Subramanian, A.P., Buddhikot, M.M., Das, S.R.: Understanding traffic dynamics in cellular data networks. In: INFOCOM, 2011 Proceedings IEEE, pp. 882–890. IEEE (2011)Google Scholar
  13. 13.
    Gao, X., Edfors, O., Tufvesson, F., Larsson, E.G.: Massive MIMO in real propagation environments: do all antennas contribute equally? IEEE Trans. Wirel. Commun. 63(11), 3917–3928 (2015)CrossRefGoogle Scholar
  14. 14.
    Parkvall, S., Furuskar, A., Dahlman, E.: Evolution of LTE toward IMT-Advanced. IEEE Commun. Mag. 49(2), 84–91 (2011)CrossRefGoogle Scholar
  15. 15.
    Tao, L., Wang, Y., Gao, Y., Chi, N.: High order CAP system using DML for short reach optical communications. IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014)CrossRefGoogle Scholar
  16. 16.
    Liu, X., Effenberger, F.: Emerging optical access network technologies for 5G wireless. J. Opt. Commun. Netw. 8(12), B70–B79 (2016)CrossRefGoogle Scholar
  17. 17.
    Gao, Y., Cartledge, J.C., Yam, S.S.-H., Rezania, A., Matsui, Y.: 112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation. In: Proceedings of European Conference on Optical Communication (ECOC), paper M.2.C.2 (2016)Google Scholar
  18. 18.
    Matsui, Y.: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB lasers. J. Lightwave Technol. 34(11), 2677–2683 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, K., Zhuge, Q., Xin, H., He, H., Hu, W., Plant, D.V.: Low-Cost WDM fronthaul enabled by partitioned asymmetric AWGR with simultaneous flexible transceiver assignment and chirp management. J. Opt. Commun. Netw. 9(10), 876–888 (2017)CrossRefGoogle Scholar
  20. 20.
    Xue, L., Yi, L., Hu, W.: 4 × 25-Gb/s NRZ-OOK signals transmission over a 160-km single-mode fiber using 10G-class DML and photodiode. IEEE Photon. J. 10(3), 7103508 (2018)Google Scholar
  21. 21.
    Zhang, K., Zhuge, Q., Xin, H., Morsy-Osman, M., El-Fiky, E., Yi, L., Hu, W., Plant, D.V.: Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission. Opt. Express 25, 28123–28135 (2017)CrossRefGoogle Scholar
  22. 22.
    Xin, H., Zhang, K., Zhuge, Q., Yi, L., Hu, W., Plant, D.V.: Transmission of 100 Gb/s PAM4 signals over 15 km dispersion-unmanaged SSMF using a directly modulated laser in C-band. In: Proceedings of European Conference on Optical Communication (ECOC) (2018)Google Scholar
  23. 23.
    Miao, X., Bi, M., Fu, Y., Li, L., Hu, W.: Experimental study of NRZ, duobinary, and PAM-4 in O-band DML-based 100G-EPON. IEEE Photon. Technol. Lett. 17(29), 1940–1943 (2017)Google Scholar
  24. 24.
    Zhang, K., Zhuge, Q., Xin, H., Xing, Z., Xiang, M., Fan, S., Yi, L.L., Hu, W.S., Plant, D.V.: Demonstration of 50 Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band. In: Optical Fiber Communication Conference, paper M1B.5 (2018)Google Scholar
  25. 25.
    Xin, H., Zhang, K., Hussain, S.B., Li, L., Fu, Y., Guo, Z., He, H., Hu, W.: Flexible hybrid PAM2/4 for fidelity optimization in digital mobile fronthaul. IEEE Photon. Technol. Lett. 30(7), 599–602 (2018)CrossRefGoogle Scholar
  26. 26.
    Xin, H., Zhang, K., He, H., Hu, W., Zhang, M.: Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4. Opt. Express 25(5), 5559–5570 (2017)CrossRefGoogle Scholar
  27. 27.
    Xin, H., Zhang, K., He, H., Zhang, M., Hu, W.: High tolerance against chirp induced PAM4 eye skewing in DML-based digital mobile fronthaul with 11 dB EVM reduction. In: ECOC, paper M1B.3 (2017)Google Scholar
  28. 28.
    Technical Specification Group Radio Access Network, 3GPPP Tech. Rep. 38.801 (Release 14)Google Scholar
  29. 29.
    Next Generation Fronthaul Interface: Working Group (Online) (1914). http://sites.ieee.org/sagroups-1914/p1914-1/. Accessed 4 June 2018
  30. 30.
    Next Generation Mobile Networks (NGMN) alliance: Overview on 5G RAN Functional Decomposition, white paper, February (2018)Google Scholar
  31. 31.
    GPP TR 38.816 V15.0.0 TSG RAN: Study on CU-DU lower layer split for NR (2017)Google Scholar
  32. 32.
    Li, L., Bi, M., Wang, W., Fu, Y., Miao, X., Hu, W.: SINR-oriented flexible quantization bits for optical-wireless deep converged eCPRI. In: Conference on Optical Network Design and Modeling, pp. 172–177, Ireland (2018)Google Scholar
  33. 33.
    Bartelt, J., Vucic, N., Camps-Mur, D., Garcia-Villegas, E., Demirkol, I., Fehske, A., Grieger, M., Tzanakaki, A., Gutiérrez, J., Grass, E., Lyberopoulos, G., Fettweis, G.: 5G transport network requirements for the next generation fronthaul interface. J. Wirel. Commun. Netw. 2017, 89 (2017)CrossRefGoogle Scholar
  34. 34.
    Dötsch, U., Doll, M., Mayer, H.P., Schaich, F., Segel, J., Sehier, P.: Quantitative analysis of split base station processing and determination of advantageous architectures for LTE. Bell Labs Tech. J. 18(1), 105–128 (2013)CrossRefGoogle Scholar
  35. 35.
    GPP, TS 36.814, v9.2.0: Further advancements for E-UTRA physical layer aspects (Release 12) (2017)Google Scholar
  36. 36.
    Li, L., Bi, M., Miao, X., Fu, Y., Zhang, M., Hu, W.: Quantization-noise suppression for uplink eCPRI assisted by wireless-channel estimation feedback. In: European Conference on Optical Communication, TH2.63 (2018)Google Scholar
  37. 37.
    Zeng, H., Liu, X., Megeed, S., Chand, N., Effenberger, F.: Real-time demonstration of CPRI-compatible efficient mobile fronthaul using FPGA. J. Lightwave Technol. 35(6), 1241–1247 (2017)CrossRefGoogle Scholar
  38. 38.
    Liu, F., Xu, M., Cheng, L., Wang, J., Sheng, S., Su, C., Chang, G.K.: Efficient mobile fronthaul serving massive MIMO new radio services using single-IF with Sample-wise TDM for reduced RRH complexity and ultra-low latency. In: Optical Fiber Communication Conference, TH3A.4 (2017)Google Scholar
  39. 39.
    Li, L., Bi, M., Miao, X., Fu, Y., Hu, W.: High-fidelity and low-latency mobile fronthaul based on segment-wise TDM and MIMO-interleaved arraying. Opt. Express 26(2), 2079–2088 (2018)CrossRefGoogle Scholar
  40. 40.
    Li, L., Bi, M., Zhang, Y., Zhang, K., Miao, X., Hu, W.: An IF-free TDM fronthaul aggregating two 128-MIMO signals with enhanced spectral efficiency using baseband sample interleaved gathering. In: Optical Fiber Communication Conference, Tu2I.6 (2018)Google Scholar
  41. 41.
    Chin-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., Pan, Z. Toward Green and Soft: A 5G Perspective. IEEE Comm. Mag. 52, 66–73 (2014)Google Scholar
  42. 42.
    Quek, T.Q.S, Peng, M., Simeone, O., Yu, W. Cloud Radio Access Networks, Principles, Technologies, and Applications, Cambridge University Press (2017)Google Scholar
  43. 43.
    Megeed, S., Liu, X., Zeng, H., Effenberger, F.: Demonstration of a FPGA-based CPRI-over-ethernet real-time system achieving 120 Gb/s throughput over a 10-km SSMF link with 16 Bi-directional 10GE connections. In: Proceedings of OFC, pp. 1–3, paper Th4B.2 (2017)Google Scholar
  44. 44.
    Liu, C., Zhang, L., Zhu, M., Wang, J., Cheng, L., Chang, G.-K.: A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies. IEEE/OSA J. Lightwave Technol. 31(17), 2869–2875 (2013)CrossRefGoogle Scholar
  45. 45.
    Iida, D., Kuwano, S., Kani, J., Terada, J.: Dynamic TWDM PON for mobile radio access networks. Opt. Express 21, 26209–26218 (2013)CrossRefGoogle Scholar
  46. 46.
    Schrenk, B., Poppe, A., Stierle, M., Leopold, H.: Fully passive optical switch introducing dynamicity and flexibility to metro-access. IEEE Photon. Technol. Lett. 27(5), 486–489 (2015)CrossRefGoogle Scholar
  47. 47.
    Hu, W., Yi, L., He, H., Yang, X., Li, Z., Bi, M., Zhang, K., Xin, H., Liu, Y., Du, W.: Soft-stacked PON for soft C-RAN. J. Opt. Commun. Netw. 8(11), B12–B20 (2016)CrossRefGoogle Scholar
  48. 48.
    Tao, L., Wang, Y., Xiao, J., Chi, N.: Enhanced performance of 400 Gb/s DML-based CAP systems using optical filtering technique for short reach communication. Opt. Express 22(24), 29331–29339 (2014)CrossRefGoogle Scholar
  49. 49.
    Yan, L.S., Wang, Y., Zhang, B., Yu, C., McGeehan, J., Paraschis, L., Willner, A.E.: Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering. Opt. Express 13, 5106–5115 (2005)CrossRefGoogle Scholar
  50. 50.
    Bi, M., Xiao, S., Yi, L., He, H., Li, J., Hu, W.: Power budget improvement low-cost symmetric 40-Gb/s DML-based TWDM-PON. Opt. Express 22(6), 6925–6933 (2014)CrossRefGoogle Scholar
  51. 51.
    Du, W., Xin, H., He, H., Hu, W.: A resource sharing C-RAN architecture with wavelength selective switching and parallel uplink signal detection. In: Asia Communications and Photonics Conference (ACP), Hong Kong (2015)Google Scholar
  52. 52.
    Xin, H., He, H., Zhang, K., Hussain, S.B., Hu, W.: Flexible baseband-unit aggregation enabled by reconfigurable multi-IF over WDM fronthaul. IEEE Photon. J. 10(1), 7200210 (2018)CrossRefGoogle Scholar
  53. 53.
    Mikaeil, A.M., Hu, W.S., Ye, T., Hussain, S.B.: Performance evaluation of XG-PON based mobile front-haul transport in cloud-RAN architecture. J. Opt. Commun. Netw. 9(11), 984–994 (2017)CrossRefGoogle Scholar
  54. 54.
    Ammar, D., Begin, T., Guerin-Lassous, I.: A new tool for generating realistic internet traffic in ns-3. In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2011)Google Scholar
  55. 55.
    Yoshimoto, N.: Operator perspective on next-generation optical access for future radio access. In: 2014 IEEE International Conference on Communications Workshops (ICC). IEEE, pp. 376–381 (2014)Google Scholar
  56. 56.
    Small Cell Forum SCF159: Small cell virtualization functional splits and use cases, version 159.07.02. (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Institute for Advanced Communication and Data Science, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations