Advertisement

10 Gbps CPRI signals transmission impaired by intercore crosstalk in 5G network fronthauls with multicore fibers

  • João L. RebolaEmail author
  • Adolfo V. T. Cartaxo
  • André S. Marques
Original Paper
  • 35 Downloads

Abstract

The impact of intercore crosstalk (ICXT) of weakly-coupled multicore fibers (MCFs) on the transmission performance of a Common Public Radio Interface (CPRI) signal in 5G networks fronthaul is studied by numerical simulation. The results show that forward error correction-supported CPRI signals have more tolerance to ICXT due to the higher targeted bit error rate (of 10−3). For a receiver power penalty of 1 dB, an improvement of the tolerance of CPRI signals to ICXT, due to the increase of the MCF skew by about 1 dB, is observed. However, for the crosstalk levels that lead to 1 dB power penalty, we have shown that, the system is unavailable with a high probability. The crosstalk level required for an acceptable outage probability is about 10 dB lower than the crosstalk level leading to 1 dB power penalty.

Keywords

5G wireless networks Bit error rate Common public radio interface Intercore crosstalk Multicore fiber Outage probability 

Notes

Acknowledgements

This work was supported in part by Fundação para a Ciência e a Tecnologia (FCT) from Portugal under the project of Instituto de Telecomunicações AMEN-ID/EEA/50008/2013.

References

  1. 1.
    China Mobile: C-RAN: the road towards green RAN. White Paper, version 2.5, https://pdfs.semanticscholar.org/eaa3/ca62c9d5653e4f2318aed9ddb8992a505d3c.pdf (2011). Accessed 9 January 2019
  2. 2.
    Pizzinat, A., Chanclou, P., Saliou, F., Diallo, T.: Things you should know about fronthaul. IEEE/OSA J. Lightw. Technol. 33(5), 1077–1083 (2015)CrossRefGoogle Scholar
  3. 3.
    Shafi, M., Molisch, A., Smith, P., Haustein, T., Zhu, P., Silva, P., Tufvesson, F., Benjebbour, A., Wunder, G.: 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)CrossRefGoogle Scholar
  4. 4.
    Chanclou, P., Pizzinat, A., Clech, F., Reedeker, T., Lagadec, Y., Salliou F., Guyader, B., Guillo, L., Deniel, Q., Gosselin, S., Le, S., Diallo, T., Brenot, R., Lelarge, F., Marazzi, L., Parolari, O., Martinelli, M., Dull, S., Gebrewold, S., Hillerkuss, D., Leuthold, J., Gavioli, G., Galli, P.: Optical fiber solution for mobile fronthaul to achieve cloud radio access network. In: Future Network and Mobile Summit 2013, session 9e, Lisbon, Portugal (2013)Google Scholar
  5. 5.
    Galve, J.M., Gasulla, I., Sales, S., Capmany, J.: Reconfigurable radio access networks using multicore fibers. IEEE J. Quantum Electron. 52(1), 1–7 (2016)CrossRefGoogle Scholar
  6. 6.
    Alimi, I., Teixeira, A., Monteiro, P.: Towards an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges and solutions. IEEE Commun. Surv. Tuts. 20(1), 708–769 (2018)CrossRefGoogle Scholar
  7. 7.
    Dat, P., Kanno, A., Kawanishi, T.: Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wirel. Commun. 22(5), 67–75 (2015)CrossRefGoogle Scholar
  8. 8.
    Common Public Radio Interface: CPRI specification V7.0. Standard Document Specification, vol. 1 (2015)Google Scholar
  9. 9.
    Pfeiffer, T.: Next generation mobile fronthaul and midhaul architectures. IEEE/OSA J. Opt. Commun. Netw. 7(11), B38–B45 (2015)CrossRefGoogle Scholar
  10. 10.
    Telecommunications Standardization Sector of ITU-T: Transport network support of IMT-2020/5G. ITU-T Technical Report (2018). https://www.itu.int/md/T17-SG15-170619-TD-GEN-0078/en. Accessed 8 January 2019
  11. 11.
    Macho, A., Morant, M., Llorente, R.: Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J. Lightw. Technol. 34(20), 4819–4827 (2016)CrossRefGoogle Scholar
  12. 12.
    Galve, J., Gasulla, I., Sales, S., Capmany, J.: Fronthaul design for radio access networks using multicore fibers. Waves Magaz. 7(1), 69–80 (2015)Google Scholar
  13. 13.
    Sakaguchi, J., Puttnam, B., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T., Imamura, K., Inaba, H., Mukasa, K., Sugizaki, R., Kobayashi, T., Watanabe, M.: 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. IEEE/OSA J. Lightw. Technol. 31(4), 554–562 (2013)CrossRefGoogle Scholar
  14. 14.
    Puttnam, B., Luís, R., Mendinueta, J., Sakaguchi, J., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T.: High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber. Opt. Expr. 22(18), 21185–21191 (2014)CrossRefGoogle Scholar
  15. 15.
    Feuer, M., Nelson, L., Zhou, X., Woodward, S., Isaac, R., Zhu, B., Taunay, T., Fishteyn, M., Fini, J., Yan, M.: Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Techn. Lett. 24(21), 1957–1960 (2012)CrossRefGoogle Scholar
  16. 16.
    Igarashi, K., Tsuritani, T., Morita, I., Tsuchida, Y., Maeda, K., Tadakuma, M., Saito, T., Watanabe, K., Imamura, K., Sugizaki, R., Suzuki, M.: Super-Nyquist-WDM transmission over 7326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s km. Opt. Expr. 22(2), 1220–1228 (2014)CrossRefGoogle Scholar
  17. 17.
    Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., Sasaoka, E.: Design and fabrication of ultra-low crosstalk and low-loss multicore fiber. Opt. Expr. 19(17), 16576–16592 (2011)CrossRefGoogle Scholar
  18. 18.
    Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., Matsuo, S.: Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Opt. Expr. 20(14), 15157–15170 (2012)CrossRefGoogle Scholar
  19. 19.
    Cartaxo, A., Luís, R., Puttnam, B., Hayashi, T., Awaji, Y., Wada, N.: Dispersion impact on the crosstalk amplitude response of homogeneous multi-core fibers. IEEE Photon. Technol. Lett. 28(17), 1858–1861 (2016)CrossRefGoogle Scholar
  20. 20.
    Luís, R., Puttnam, B., Cartaxo, A., Klaus, W., Mendinueta, J., Awaji, Y., Wada, N., Nakanishi, T., Hayashi, T., Sasaki, T.: Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers. IEEE/OSA J. Lightw. Technol. 15(2), 441–447 (2016)CrossRefGoogle Scholar
  21. 21.
    Alves, T., Cartaxo, A., Luís, R., Puttnam, B., Awaji, Y., Wada, N.: Intercore crosstalk in direct-detection homogeneous multicore fiber systems impaired by laser phase noise. Opt. Expr. 25(23), 29417–29431 (2017)CrossRefGoogle Scholar
  22. 22.
    Alves, T., Cartaxo, A.: Intercore crosstalk in homogeneous multicore fibers: theoretical characterization of stochastic time evolution. IEEE/OSA J. Lightw. Technol. 35(21), 4613–4623 (2017)CrossRefGoogle Scholar
  23. 23.
    Alves, T., Cartaxo, A.: Characterization of the stochastic time evolution of short-term average intercore crosstalk in multicore fibers with multiple interfering cores. Opt. Expr. 26(4), 4605–4620 (2018)CrossRefGoogle Scholar
  24. 24.
    Koshiba, M., Saitoh, K., Takenaga, K., Matsuo, S.: Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photon. J. 4(5), 1987–1995 (2012)CrossRefGoogle Scholar
  25. 25.
    Cartaxo, A., Alves, T.: Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers. IEEE/OSA J. Lightw. Technol. 35(12), 2398–2408 (2017)CrossRefGoogle Scholar
  26. 26.
    Soeiro, R., Alves, T., Cartaxo, A.: Dual polarization discrete changes model of inter-core crosstalk in multi-core fibers. IEEE Photon. Technol. Lett. 29(16), 1395–1398 (2017)CrossRefGoogle Scholar
  27. 27.
    Ye, F., Tu, J., Saitoh, K., Takenaga, K., Matsuo, S., Takara, H., Morioka, T.: Wavelength dependence of inter-core crosstalk in homogeneous multi-core fibers. IEEE Photon. Technol. Lett. 28(1), 27–30 (2016)CrossRefGoogle Scholar
  28. 28.
    Sano, A., Takara, H., Kobayashi, T., Miyamoto, Y.: Crosstalk-managed high capacity long haul multicore fibre transmission with propagation-direction interleaving. IEEE/OSA J. Lightw. Technol. 32(16), 2771–2779 (2014)CrossRefGoogle Scholar
  29. 29.
    Takenaga, K., Arakawa, Y., Tanigawa, S., Guan, N., Matsuo, S., Saitoh, K., Koshiba, M.: Reduction of crosstalk by trench-assisted multi-core fiber. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2011, Paper OWJ4, Los Angeles, USA, (2011)Google Scholar
  30. 30.
    Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., Sasaoka, E.: Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. IEEE/OSA J. Lightw. Technol. 30(4), 583–589 (2012)CrossRefGoogle Scholar
  31. 31.
    Puttnam, B., Luís, R., Eriksson, T., Klaus, W., Mendinueta, J., Awaji, Y., Wada, N.: Impact of inter-core crosstalk on the transmission distance of QAM formats in multi-core fibers. IEEE Photon. J. 8(5), 936–944 (2016)Google Scholar
  32. 32.
    Hayashi, T., Sasaki, T., Sasaoka, E.: Behavior of inter-core crosstalk as a noise and its effect on Q-factor in multi-core fiber. IEICE Trans. Commun. E97-B(5), 936–944 (2014)CrossRefGoogle Scholar
  33. 33.
    Shimakawa, O., Shiazaki, M., Sano, T., Inone, A.: Pluggable fan-out realizing physical-contact and low coupling loss for multi-core fiber. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2013, Paper OM3I.2, Anaheim, USA (2013)Google Scholar
  34. 34.
    Jung, Y., Hayes, J., Alam, S., Richardson, D.: Multicore fibre fan-in/fan-out device using fibre optic collimators. In: Proc. European Conference on Optical Communication, ECOC 2017, Paper P1.SC1.17, Gothenburg, Sweden (2017)Google Scholar
  35. 35.
    Agrawal, G.P.: Fiber-optic communication systems, 4th edn. John Wiley & Sons, New Jersey (2010)CrossRefGoogle Scholar
  36. 36.
    Rebola, J., Cartaxo, A.: Gaussian approximation for performance assessment of optically preamplified receivers with arbitrary optical and electrical filters. IET Optoelectron. 148(3), 135–142 (2001)CrossRefGoogle Scholar
  37. 37.
    Carlson, A., Crilly, P.: Communication systems: an introduction to signals and noise in electrical communication, 5th edn. McGraw-Hill, New York (2010)Google Scholar
  38. 38.
    Parolari, P., Marazzi, L., Brunero, M., Martinelli, M., Maho, A., Barbet, S., Lelarge, F., Brenot, R., Gavioli, G., Simon, G., Saliou, F., Deniel, Q., Chanclou, P.: Operation of RSOA WDM PON self-seeded transmitter over more 50 km of SSMF up to 10 Gb/s. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2014, Paper W3G.4, San Francisco, USA (2014)Google Scholar
  39. 39.
    Pinheiro, B., Rebola, J., Cartaxo, A.: Impact of inter-core crosstalk on the performance of multi-core fibers-based SDM systems with coherent detection. In: Proc. International Conference on Photonics, Optics and Laser Technology, Photooptics 2018, Funchal, Portugal, 74–81 (2018)Google Scholar
  40. 40.
    Rademacher, G., Luís, R., Puttnam, B., Awaji, Y., Wada, N.: Crosstalk dynamics in multi-core fibers. Opt. Expr. 25(10), 12020–12028 (2017)CrossRefGoogle Scholar
  41. 41.
    Cvijetic, N., Wilson, S., Qian, D.: System outage probability due to PMD in high-speed optical OFDM transmission. IEEE/OSA J. Lightw. Technol. 26(14), 2118–2127 (2008)CrossRefGoogle Scholar
  42. 42.
    Winzer, P., Foschini, G.: MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt. Expr. 19(17), 16680–16696 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ISCTE-Instituto Universitario de LisboaLisbonPortugal
  2. 2.Instituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations