Advertisement

Compressively sensing nonadjacent block-sparse spectra via a block discrete chirp matrix

  • Yuanrong Tian
  • Xing Wang
Original Paper
  • 18 Downloads

Abstract

The block-sparse structure is shared by many types of signals, including audio, image, and radar-emitted signals. This structure can considerably improve compressive sensing (CS) performance and has attracted much attention in recent years. However, when fitting this model in practical applications, the nonzero blocks are always separated by one or more zero blocks to avoid interference between active emitters. (Generally, a block is occupied by an emitter.) In this paper, we coin a new phrase, ‘nonadjacent block sparse,’ or NBS, to describe this new structure. Our contributions are threefold. First, from a statistical probability perspective, the mean value and variance of block sparsity are evaluated and used to describe an NBS signal. Second, by employing the block discrete chirp matrix (BDCM), we propose and prove a condition that ensures the successful recovery of NBS signals from their linear measurements with high probability. Specifically, as long as a condition involved in mean value and variance of block sparsity is satisfied, an NBS signal can be successfully recovered with a high probability. Third, extensive experiments are simulated, and deep theoretical implications are discussed. The analyzed results demonstrate the progress we have made toward block-sparse CS.

Keywords

Compressively sensing Nonadjacent block-sparse spectra Block discrete chirp matrix 

Notes

Acknowledgements

The authors would like to thank professor Yonina C. Eldar for her code, which is available to the public on her homepage.

References

  1. 1.
    Huang, R., Rhee, K.H., Uchida, S.: Multimed. Tools Appl. 72, 71 (2014).  https://doi.org/10.1007/s11042-012-1337-0 CrossRefGoogle Scholar
  2. 2.
    Chen, J., Chen, Y., Qin, D., Kuo, Y.: An elastic net-based hybrid hypothesis method for compressed video sensing. Multimed. Tools Appl. 74(6), 2085–2108 (2015)CrossRefGoogle Scholar
  3. 3.
    Stimson, G.W.: Introduction to airborne radar, 2nd edn. SciTech Publishing Inc, Mendham (1998)Google Scholar
  4. 4.
    Vakin, S.A., Shustov, L.N., Dunwell, R.H.: Fundamentals of electronic warfare. Artech House, Boston (2001)Google Scholar
  5. 5.
    Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7–8), 2031–2038 (2013)CrossRefGoogle Scholar
  6. 6.
    Khader, A.: Jilani Saudagar, Abdul Sattar Syed. Image compression approach with ridgelet transformation using modified neuro modeling for biomedical images. Neural Comput. Appl. 24(7–8), 1725–1734 (2014)Google Scholar
  7. 7.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  9. 9.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRefGoogle Scholar
  10. 10.
    Ivana, T., Pascal, F.: Dictionary learning: what is the right representation for my signal. IEEE Signal Process. Mag. 4(2), 27–38 (2011)Google Scholar
  11. 11.
    Chen, Y., Oh, H.S.: A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Commun. Surv. Tutor. 18(1), 848–859 (2016)CrossRefGoogle Scholar
  12. 12.
    Sahai, A.: Spectrum sensing: fundamental limits and practical challenges. Tutorial Document on IEEE Dyspan (2005)Google Scholar
  13. 13.
    Tian, Z., Giannakis, G.B.: Compressed sensing for wideband cognitive radios. In: International Conference on Acoustic, Speech, and Signal Processing (ICASSP) (2007)Google Scholar
  14. 14.
    Axell, E., Leus, G., Larsson, E.G., et al.: Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)CrossRefGoogle Scholar
  15. 15.
    Sun, H., Nallanathan, A., Wang, C.X., et al.: Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel. Commun. 20(2), 74–81 (2013)CrossRefGoogle Scholar
  16. 16.
    Hattab, G., Ibnkahla, M.: Multiband Spectrum Sensing: Challenges and Limitations. arXiv preprint arXiv:1409.6394 (2014)
  17. 17.
    De, P., Satija, U.: Sparse representation for blind spectrum Sensing in cognitive radio: a compressed sensing approach. Circuits Syst. Signal Process. 35(12), 4413–4444 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sharma, S.K., Lagunas, E., Chatzinotas, S., et al.: Application of compressive sensing in cognitive radio communications: a survey. IEEE Commun. Surv. Tutor. 18(3), 1838–1860 (2016)CrossRefGoogle Scholar
  19. 19.
    Sharma, S.K., Bogale, T.E., Chatzinotas, S., et al.: Cognitive radio techniques under practical imperfections: a survey. IEEE Commun. Surv. Tutor. 17(4), 1858–1884 (2015)CrossRefGoogle Scholar
  20. 20.
    Mishali, M., Eldar, Y.C.: Blind multiband signal reconstruction: compressed sensing for analog signals. IEEE Trans. Signal Process. 57(3), 993–1009 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Stojnic, M., Parvaresh, F., Hassibi, B.: On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8), 3075–3085 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55(11), 5302–5316 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Eldar, Y.C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Eldar, Y.C., Rauhut, H.: Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 56(1), 505–519 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25(1), 1–24 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bajwa, W.U., Duarte, M.F., Calderbank, R.: Conditioning of random block subdictionaries with applications to block-sparse recovery and regression. IEEE Trans. Inf. Theory 61(7), 4060–4079 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Mehdi, K., Jingxin, Z., Cishen, Z., Hadi, Z.: Iterative bayesian reconstruction of non-IID blocksparse signals. IEEE Trans. Signal Process. 64(13), 3297–3307 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mehdi, K., Jingxin, Z., Cishen, Z., Hadi, Z.: Block-sparse impulsive noise reduction in OFDM systems—a novel iterative Bayesian approach. IEEE Trans. Commun. 64(1), 271–284 (2016)CrossRefGoogle Scholar
  29. 29.
    Adcock B, Hansen A C, Poon C, et al. Breaking the coherence barrier: a new theory for compressed sensing. Forum of Mathematics, Sigma (2017).  https://doi.org/10.1017/fms.2016.32
  30. 30.
    Chauffert, N., Ciuciu, P., Jonas Kahn, J., et al.: Variable density sampling with continuous trajectories. SIAM J. Imaging Sci. 7(4), 1962–1992 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Bigot, J., Boyer, C., Weiss, P.: An analysis of block sampling strategies in compressed sensing. IEEE Trans. Inf. Theory 62(4), 2125–2139 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Boyer, C., Bigot, J., Weiss, P.: Compressed sensing with structured sparsity and structured acquisition. Appl. Comput. Harmon. Anal. (2017).  https://doi.org/10.1016/j.acha.2017.05.005 CrossRefGoogle Scholar
  33. 33.
    Applebaum, L., Howard, S.D., Searle, S., et al.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26(2), 283–290 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Calderbank, R., Thompson, A., Xie, Y.: On block coherence of frames. Appl. Comput. Harmon. Anal. 38(1), 50–71 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Bajwa, W.U., Calderbank, R., Jafarpour, S.: Revisiting model selection and recovery of sparse signals using one-step thresholding. In: 48th Annual Allerton Conference on Communication, Control, and Computing (2010)Google Scholar
  36. 36.
    Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Candes, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRefGoogle Scholar
  39. 39.
    Laska, J., Kirolos, S., Massoud, Y., et al.: Random sampling for analog-to-information conversion of wideband signals. In: IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software (2006)Google Scholar
  40. 40.
    Zhilin, Z., Bhaskar, R.: Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans. Signal Process. 61(8), 2009–2015 (2013)CrossRefGoogle Scholar
  41. 41.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B-Stat. Methodol. 68(1), 49–67 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Baron, D., Sarvotham, S., Baraniuk, R.G.: Bayesian compressive sensing via belief propagation. IEEE Trans. Signal Process. 58(1), 269–280 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Aeronautics EngineeringAir Force Engineering UniversityXi’anChina

Personalised recommendations