Advertisement

Microring resonator-based photonic system for terahertz signal generation

  • Rohan KattiEmail author
  • Shanthi Prince
Original Paper
  • 86 Downloads

Abstract

We propose a photonic system based on add–drop microring resonator and mode-locked laser for terahertz (THz) signal generation. A mode-locked laser acts as an input source to the microring resonator. The transfer characteristics of the microring resonator generate Lorentzian shaped pulses at the output ports of the microring resonator. These series of pulses obtained are then investigated in two approaches; in the first approach, the output of the microring resonator is given to a photodetector which generates 33 THz pulses separated by a spacing of 1 THz with a full width at half maximum (FWHM) of 0.15 THz. In the second approach, the output of the microring resonator is given to an optical filter to extract a particular frequency component. In this case, a single THz carrier with a FWHM of 0.2618 THz is obtained. The THz frequency components generated by the proposed photonic system can act as carriers for communication between the indoor user and the base station of a pico/femto cell in a 5G environment.

Keywords

Microwave photonics THz signal generation Microring resonator Frequency comb generation Mode-locked laser 

Notes

Acknowledgements

The authors acknowledge Ministry of Electronics and Information Technology (MeitY), Government of India, for the Visvesvaraya Ph.D. fellowship. They also acknowledge RSoft for the tool support. They are thankful to SRM Institute of Science and Technology for the infrastructural and computational support.

References

  1. 1.
    Seeds, A., Lee, C.H., Funk, E., Nagamura, M.: Guest editorial: microwave photonics. J. Lightwave Technol. 21(12), 2959–2960 (2003)CrossRefGoogle Scholar
  2. 2.
    Seeds, A.J., Williams, K.J.: Microwave photonics. J. Lightwave Technol. 24(12), 4628–4641 (2006)CrossRefGoogle Scholar
  3. 3.
    Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat. Photonics 1(6), 319–330 (2007)CrossRefGoogle Scholar
  4. 4.
    Ridgway, R.W., Dohrman, C.L., Conway, J.A.: Microwave photonics programs at DARPA. J. Lightwave Technol. 32(20), 3428–3439 (2014)CrossRefGoogle Scholar
  5. 5.
    Urick, V.J., Williams, K.J., McKinney, J.D.: Fundamentals of Microwave Photonics. Wiley, New York (2015)CrossRefGoogle Scholar
  6. 6.
    Lee, C.H.: Microwave Photonics. CRC Press, Boca Raton (2013)Google Scholar
  7. 7.
    Xu, K., Wang, R., Dai, Y., Yin, F., Li, J., Ji, Y., Lin, J.: Microwave photonics: radio-over-fiber links, systems, and applications. Photonics Res. 2(4), B54–B63 (2014)CrossRefGoogle Scholar
  8. 8.
    Capmany, J., Muñoz, P.: Integrated microwave photonics for radio access networks. J. Lightwave Technol. 32(16), 2849–2861 (2014)CrossRefGoogle Scholar
  9. 9.
    Fiorani, M., Skubic, B., Mårtensson, J., Valcarenghi, L., Castoldi, P., Wosinska, L., Monti, P.: On the design of 5G transport networks. Photonic Netw. Commun. 30(3), 403–415 (2015)CrossRefGoogle Scholar
  10. 10.
    Sotom, M., Bénazet, B., Le Kernec, A., Maignan, M.: Microwave photonic technologies for flexible satellite telecom payloads. In: Proceedings of the 35th European Conference on Optical Communication, Vienna, pp. 1–4 (2009)Google Scholar
  11. 11.
    Raza, A., Ghafoor, S., Butt, M.F.U.: MIMO-enabled integrated MGDM–WDM distributed antenna system architecture based on plastic optical fibers for millimeter-wave communication. Photonic Netw. Commun. 35(2), 265–273 (2018)CrossRefGoogle Scholar
  12. 12.
    Capmany, J., Ortega, B., Pastor, D.: A tutorial on microwave photonic filters. J. Lightwave Technol. 24(1), 201–229 (2006)CrossRefGoogle Scholar
  13. 13.
    Nagatsuma, Tadao, Nishii, Hiroki, Ikeo, Toshiyuki: Terahertz imaging based on optical coherence tomography. Photonic Res. 2(4), B64–B69 (2014)CrossRefGoogle Scholar
  14. 14.
    Manka, M.E.: Microwave photonics for electronic warfare applications. In Proceedings of IEEE International Topical Meeting on Microwave Photonics (MWP), Australia, pp. 275–278 (2008)Google Scholar
  15. 15.
    Waterhouse, R., Novack, D.: Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16(8), 84–92 (2015)CrossRefGoogle Scholar
  16. 16.
    Tsokos, C., Groumas, P., Katopodis, V., Avramopoulos, H., Kouloumentas, C.: Enabling photonic integration technology for microwave photonics in 5G systems. In: Proceedings of IEEE 19th International Conference on Transparent Optical Networks (ICTON), Catalonia, pp. 1–4 (2017)Google Scholar
  17. 17.
    Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)CrossRefGoogle Scholar
  18. 18.
    Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)CrossRefGoogle Scholar
  19. 19.
    Liu, L.: Compressed sensing on terahertz imaging. Doctoral dissertation, University of Liverpool (2017)Google Scholar
  20. 20.
    Chen, Y., Ding, Y., Zhu, Z., Chi, H., Zheng, S., Zhang, X., Jin, X., Galili, M., Yu, X.: Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter. Opt. Commun. 373, 65–69 (2016)CrossRefGoogle Scholar
  21. 21.
    Nagatsuma, T., et al.: Terahertz wireless communications based on photonics technologies. Opt. Express 21(20), 23736–23747 (2013)CrossRefGoogle Scholar
  22. 22.
    Song, H.J., Oh, K.H., Shimizu, N., Kukutsu, N., Kado, Y.: Generation of frequency-modulated sub-terahertz signal using microwave photonic technique. Opt. Express 18(15), 15936–15941 (2010)CrossRefGoogle Scholar
  23. 23.
    Sun, D., Dong, Y., Yi, L., Wang, S., Shi, H., Xia, Z., Xie, W., Hu, W.: Photonic generation of millimeter and terahertz waves with high phase stability. Opt. Lett. 39(6), 1493–1496 (2014)CrossRefGoogle Scholar
  24. 24.
    Carpintero, G., Hisatake, S., de Felipe, D., Guzman, R., Nagatsuma, T., Keil, N., Göbel, T.: Photonics-based millimeter and terahertz wave generation using a hybrid integrated dual DBR polymer laser. In: Microwave Symposium (IMS), 2016 IEEE MTT-S International 2016 May 22, pp. 1–3. IEEEGoogle Scholar
  25. 25.
    Soltanian, M.R., Amiri, I.S., Alavi, S.E., Ahmad, H.: Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber. J. Lightwave Technol. 33(24), 5038–5046 (2015)CrossRefGoogle Scholar
  26. 26.
    Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)CrossRefGoogle Scholar
  27. 27.
    Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., Poon, A.W.: Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6(2), 145–177 (2012)CrossRefGoogle Scholar
  28. 28.
    Ehteshami, N., Zhang, W., Yao, J.: Optically tunable single passband RF tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator. In: Proceedings of the 2015 International Topical Meeting on RFs (MWP), Paphos, Cyprus, 26–29 October 2015, pp. 1–4Google Scholar
  29. 29.
    Chew, S.X., Yi, X., Yang, W., Wu, C., Li, L., Nguyen, L., Minasian, R.: Optoelectronic oscillator based sensor using an on-chip sensing probe. IEEE Photonics J. 9, 5500809 (2017)CrossRefGoogle Scholar
  30. 30.
    Ehteshami, N., Zhang, W., Yao, J.: Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators. Opt. Commun. 373, 53–58 (2016)CrossRefGoogle Scholar
  31. 31.
    Amiri, I.S., Ahmad, H., Ghasemi, M., Ismail, M.F., Aidit, S.N., Soltanian, M.R., Nafarizal, N.: Silicon-based microring resonators for multi-solitons generation for THz communication. Opt. Quant. Electron. 48(8), 415 (2016)CrossRefGoogle Scholar
  32. 32.
    Luangxaysana, Khanthanou, Mitatha, Somsak, Yoshida, Masahiro, Komine, Noriyuki, Yupapin, Preecha P.: High-capacity terahertz carrier generation using a modified add-drop filter for radio frequency identification. Opt. Eng. 51(8), 085006 (2012)CrossRefGoogle Scholar
  33. 33.
    Amiri, I.S., Alizadeh, F., Ariannejad, M.M., Amini, R., Yupapin, P.: Computation of ion exchange buried microring resonator waveguide for THz communication applications. Results Phys. 10, 287–290 (2018)CrossRefGoogle Scholar
  34. 34.
    Sinha, R., Karabiyik, M., Al-Amin, C., Vabbina, P.K., Güney, D.Ö., Pala, N.: Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator. Sci. Rep. 5, 9422 (2015)CrossRefGoogle Scholar
  35. 35.
    Furusawa, K., Sekine, N., Kasamatsu, A., Uzawa, Y.: Microring resonator based frequency comb sources for compact continuous-wave THz generators. In: Proceedings of IEEE 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancum, pp. 1–2 (2017)Google Scholar
  36. 36.
    Lo, M.C., Guzmán, R., Gordón, C., Carpintero, G.: Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation. Opt. Lett. 42(8), 1532–1535 (2017)CrossRefGoogle Scholar
  37. 37.
    Huff, L.: Optics to enable 5G Mobile Networks, Blog of 2018 Optical Fiber Communication Conference, https://www.ofcconference.org/en-us/home/about/ofc-blog/2018/march-2018/optics-to-enable-5g-mobile-networks/
  38. 38.
    Liu, Cheng, Wang, Jing, Cheng, Lin, Zhu, Ming, Chang, Gee-Kung: Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightwave Technol. 32(20), 3452–3460 (2014)CrossRefGoogle Scholar
  39. 39.
    Chandrasekhar, V., Andrews, J.G., Gatherer, A.: Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 1–23 (2008)CrossRefGoogle Scholar
  40. 40.
    Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw. 21(8), 2657–2676 (2015)CrossRefGoogle Scholar
  41. 41.
    Rodriguez, J.: Fundamentals of 5G Mobile Networks. Wiley, London (2015)CrossRefGoogle Scholar
  42. 42.
    Shams, Haymen, Seeds, Alwyn: Photonics, fiber and THz wireless communication. Opt. Photonics News 28(3), 24–31 (2017)CrossRefGoogle Scholar
  43. 43.
    Smith, P.W.: Mode-locking of lasers. Proc. IEEE 58(9), 1342–1357 (1970)CrossRefGoogle Scholar
  44. 44.
    Menzel, R.: Photonics, Linear and Nonlinear Interactions of Laser Light and Matter. Springer, New Delhi (2004)Google Scholar
  45. 45.
    Rabus, D.G.: Integrated Ring Resonators: The Compendium. Springer, Heidelberg (2007)Google Scholar
  46. 46.
    Chen, Y.F., Chang, M.T., Zhuang, W.Z., Su, K.W., Huang, K.F., Liang, H.C.: Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity. Laser Photonics Rev. 9(1), 91–97 (2015)CrossRefGoogle Scholar
  47. 47.
    Obraztsov, P.A., Okhrimchuk, A.G., Rybin, M.G., Obraztsova, E.D., Garnov, S.V.: Multi-gigahertz repetition rate ultrafast waveguide lasers mode-locked with graphene saturable absorbers. Laser Phys. 26(8), 084008 (2016)CrossRefGoogle Scholar
  48. 48.
    Hou, Lianping, Haji, Mohsin, Marsh, John H.: Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser. Opt. Exp. 22(18), 21690–21700 (2014)CrossRefGoogle Scholar
  49. 49.
    Niigaki, R., Kida, Y., Imasaka, T.: Mode-locked laser with a repetition rate of 17.6 THz. Appl. Opt. 56(27), 7636–7641 (2017)CrossRefGoogle Scholar
  50. 50.
    Vorckel, A., Monster, M., Henschel, W., Bolivar, P.H., Kurz, H.: Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers. IEEE Photonics Technol. Lett. 15(7), 921–923 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ECESRM Institute of Science and Technology, SRM NagarKattankulathurIndia

Personalised recommendations