Photonic Network Communications

, Volume 37, Issue 1, pp 100–109 | Cite as

A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems

  • Vahid Fallahi
  • Mahmood SeifouriEmail author
  • Masoud Mohammadi
Original Paper


In this research, using photonic crystal dielectric rods with a triangular lattice constant, a photonic crystal ring resonator (PhCRR) has been designed in order to be used in optical add/drop filters (ADF).Query Using the proposed hexagonal PhCRR with four different dropping waveguides, new ADFs have been designed and simulated. At a central wavelength of 1550.5 nm, the four proposed ADFs have an average transmission coefficient, a bandwidth, and a quality factor of 100%, 1.2 nm and 1330, respectively. The results obtained from these structures indicate the high flexibility of the proposed PhCRR and ADFs and their applicability in optical communication systems. Using the ADFs, two multi-channel drop filters have been designed in order to be used as optical MUX/DeMUX with a channel spacing of 4 nm which are suitable for wavelength division multiplexing systems. In this study, the plane wave expansion and finite difference time domain methods are, respectively, used, to characterize the photonic band gap and to investigate the optical behavior of the structures.


Photonic crystal Ring resonator Add/drop filter Dropping waveguide WDM Photonic band gap 


  1. 1.
    Ash, J., Ferguson, S.: The evolution of the telecommunications transport architecture: from megabit/s to terabit/s. Electron. Commun. Eng. J. 13(1), 33–42 (2001)CrossRefGoogle Scholar
  2. 2.
    Angrisani, L.: Optimisation and performance assessment of a digital signal-processing method for jitter measurement in PDH/SDH-based digital telecommunication networks. Measurement 34(4), 313–323 (2003)CrossRefGoogle Scholar
  3. 3.
    Mukherjee, B.: WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18(10), 1810–1824 (2000)CrossRefGoogle Scholar
  4. 4.
    Gunn, S.: Optical fibre wavelength division multiplexing. In: Proceedings, Southern African Conference on Communications and Signal Processing COMSIG 88, 1988. IEEE. (1988)Google Scholar
  5. 5.
    Song, B.-S., Noda, S., Asano, T.: Photonic devices based on in-plane hetero photonic crystals. Science 300(5625), 1537 (2003)CrossRefGoogle Scholar
  6. 6.
    Sukhoivanov, I.A., Guryev, I.V.: Introduction to Photonic Crystals, in Photonic Crystals, pp. 1–12. Springer, Berlin (2009)Google Scholar
  7. 7.
    Yablonovitch, E., Gmitter, T.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950 (1989)CrossRefGoogle Scholar
  8. 8.
    Foresi, J., et al.: Photonic-bandgap microcavities in optical wageguides. Nature 390(6656), 143 (1997)CrossRefGoogle Scholar
  9. 9.
    Russell, P.S.J.: Photonic crystal fibers: basics and applications. In: Optical Fiber Telecommunications VA: Components and Subsystems, p. 485 (2010)Google Scholar
  10. 10.
    Isfahani, B.M., et al.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. JOSA B 26(5), 1097–1102 (2009)CrossRefGoogle Scholar
  11. 11.
    Fan, S., et al.: Channel drop filters in photonic crystals. Opt. Express 3(1), 4–11 (1998)CrossRefGoogle Scholar
  12. 12.
    Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)CrossRefGoogle Scholar
  13. 13.
    Fallahi, V., et al.: Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt. Rev. 24(4), 605–610 (2017)CrossRefGoogle Scholar
  14. 14.
    Zavvari, M.: Design of photonic crystal-based demultiplexer with high-quality factor for DWDM applications. J. Opt. Commun. (2017). Google Scholar
  15. 15.
    Mehdizadeh, F., et al.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9(2), 1–11 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Stomeo, T., et al.: Design of two-dimensional photonic-crystal mirrors for InGaAs QW laser applications. Microelectron. Eng. 73, 377–382 (2004)CrossRefGoogle Scholar
  17. 17.
    Bendjelloul, R., Bouchemat, T., Bouchemat, M.: An optical channel drop filter based on 2D photonic crystal ring resonator. J. Electromagn. Waves Appl. 30(18), 2402–2410 (2016)CrossRefGoogle Scholar
  18. 18.
    Mahmoud, M.Y., Bassou, G., Metehri, F.: Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt. Int. J. Light Electron Opt. 125(17), 4718–4721 (2014)CrossRefGoogle Scholar
  19. 19.
    Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15(7), 075401 (2013)CrossRefGoogle Scholar
  20. 20.
    Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low-dimens. Syst. Nanostruct. 56, 211–215 (2014)CrossRefGoogle Scholar
  21. 21.
    Seifouri, M., Fallahi, V., Olyaee, S.: Ultra-high-Q optical filter based on photonic crystal ring resonator. Photon Netw. Commun. 35(2), 225–230 (2018)CrossRefGoogle Scholar
  22. 22.
    Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 126(20), 2535–2538 (2015)CrossRefGoogle Scholar
  23. 23.
    Robinson, S., Nakkeeran, R.: Coupled mode theory analysis for circular photonic crystal ring resonator-based add-drop filter. Opt. Eng. 51(11), 114001 (2012)CrossRefGoogle Scholar
  24. 24.
    Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry–Perot resonators. Opt. Commun. 284(5), 1192–1196 (2011)CrossRefGoogle Scholar
  25. 25.
    Andalib, P., Granpayeh, N.: Optical add/drop filter based on dual curved photonic crystal resonator. In: IEEE/LEOS International Conference on Optical MEMs and Nanophotonics 2008. IEEE (2008)Google Scholar
  26. 26.
    Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)CrossRefGoogle Scholar
  27. 27.
    Rakhshani, M.R., Mansouri-Birjandi, M.A.: Realization of tunable optical filter by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124(22), 5377–5380 (2013)CrossRefGoogle Scholar
  28. 28.
    Djavid, M., Abrishamian, M.: Multi-channel drop filters using photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 123(2), 167–170 (2012)CrossRefGoogle Scholar
  29. 29.
    Van, V.: Optical Microring Resonators: Theory, Techniques, and Applications. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vahid Fallahi
    • 1
  • Mahmood Seifouri
    • 1
    Email author
  • Masoud Mohammadi
    • 1
  1. 1.Faculty of Electrical EngineeringShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations