A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems
- 31 Downloads
Abstract
In this research, using photonic crystal dielectric rods with a triangular lattice constant, a photonic crystal ring resonator (PhCRR) has been designed in order to be used in optical add/drop filters (ADF).Query Using the proposed hexagonal PhCRR with four different dropping waveguides, new ADFs have been designed and simulated. At a central wavelength of 1550.5 nm, the four proposed ADFs have an average transmission coefficient, a bandwidth, and a quality factor of 100%, 1.2 nm and 1330, respectively. The results obtained from these structures indicate the high flexibility of the proposed PhCRR and ADFs and their applicability in optical communication systems. Using the ADFs, two multi-channel drop filters have been designed in order to be used as optical MUX/DeMUX with a channel spacing of 4 nm which are suitable for wavelength division multiplexing systems. In this study, the plane wave expansion and finite difference time domain methods are, respectively, used, to characterize the photonic band gap and to investigate the optical behavior of the structures.
Keywords
Photonic crystal Ring resonator Add/drop filter Dropping waveguide WDM Photonic band gapReferences
- 1.Ash, J., Ferguson, S.: The evolution of the telecommunications transport architecture: from megabit/s to terabit/s. Electron. Commun. Eng. J. 13(1), 33–42 (2001)CrossRefGoogle Scholar
- 2.Angrisani, L.: Optimisation and performance assessment of a digital signal-processing method for jitter measurement in PDH/SDH-based digital telecommunication networks. Measurement 34(4), 313–323 (2003)CrossRefGoogle Scholar
- 3.Mukherjee, B.: WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18(10), 1810–1824 (2000)CrossRefGoogle Scholar
- 4.Gunn, S.: Optical fibre wavelength division multiplexing. In: Proceedings, Southern African Conference on Communications and Signal Processing COMSIG 88, 1988. IEEE. (1988)Google Scholar
- 5.Song, B.-S., Noda, S., Asano, T.: Photonic devices based on in-plane hetero photonic crystals. Science 300(5625), 1537 (2003)CrossRefGoogle Scholar
- 6.Sukhoivanov, I.A., Guryev, I.V.: Introduction to Photonic Crystals, in Photonic Crystals, pp. 1–12. Springer, Berlin (2009)Google Scholar
- 7.Yablonovitch, E., Gmitter, T.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950 (1989)CrossRefGoogle Scholar
- 8.Foresi, J., et al.: Photonic-bandgap microcavities in optical wageguides. Nature 390(6656), 143 (1997)CrossRefGoogle Scholar
- 9.Russell, P.S.J.: Photonic crystal fibers: basics and applications. In: Optical Fiber Telecommunications VA: Components and Subsystems, p. 485 (2010)Google Scholar
- 10.Isfahani, B.M., et al.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. JOSA B 26(5), 1097–1102 (2009)CrossRefGoogle Scholar
- 11.Fan, S., et al.: Channel drop filters in photonic crystals. Opt. Express 3(1), 4–11 (1998)CrossRefGoogle Scholar
- 12.Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)CrossRefGoogle Scholar
- 13.Fallahi, V., et al.: Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt. Rev. 24(4), 605–610 (2017)CrossRefGoogle Scholar
- 14.Zavvari, M.: Design of photonic crystal-based demultiplexer with high-quality factor for DWDM applications. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0058 Google Scholar
- 15.Mehdizadeh, F., et al.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9(2), 1–11 (2017)MathSciNetCrossRefGoogle Scholar
- 16.Stomeo, T., et al.: Design of two-dimensional photonic-crystal mirrors for InGaAs QW laser applications. Microelectron. Eng. 73, 377–382 (2004)CrossRefGoogle Scholar
- 17.Bendjelloul, R., Bouchemat, T., Bouchemat, M.: An optical channel drop filter based on 2D photonic crystal ring resonator. J. Electromagn. Waves Appl. 30(18), 2402–2410 (2016)CrossRefGoogle Scholar
- 18.Mahmoud, M.Y., Bassou, G., Metehri, F.: Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt. Int. J. Light Electron Opt. 125(17), 4718–4721 (2014)CrossRefGoogle Scholar
- 19.Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15(7), 075401 (2013)CrossRefGoogle Scholar
- 20.Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low-dimens. Syst. Nanostruct. 56, 211–215 (2014)CrossRefGoogle Scholar
- 21.Seifouri, M., Fallahi, V., Olyaee, S.: Ultra-high-Q optical filter based on photonic crystal ring resonator. Photon Netw. Commun. 35(2), 225–230 (2018)CrossRefGoogle Scholar
- 22.Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 126(20), 2535–2538 (2015)CrossRefGoogle Scholar
- 23.Robinson, S., Nakkeeran, R.: Coupled mode theory analysis for circular photonic crystal ring resonator-based add-drop filter. Opt. Eng. 51(11), 114001 (2012)CrossRefGoogle Scholar
- 24.Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry–Perot resonators. Opt. Commun. 284(5), 1192–1196 (2011)CrossRefGoogle Scholar
- 25.Andalib, P., Granpayeh, N.: Optical add/drop filter based on dual curved photonic crystal resonator. In: IEEE/LEOS International Conference on Optical MEMs and Nanophotonics 2008. IEEE (2008)Google Scholar
- 26.Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)CrossRefGoogle Scholar
- 27.Rakhshani, M.R., Mansouri-Birjandi, M.A.: Realization of tunable optical filter by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124(22), 5377–5380 (2013)CrossRefGoogle Scholar
- 28.Djavid, M., Abrishamian, M.: Multi-channel drop filters using photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 123(2), 167–170 (2012)CrossRefGoogle Scholar
- 29.Van, V.: Optical Microring Resonators: Theory, Techniques, and Applications. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar