Advertisement

Exploiting efficiency of ultra-dense wavelength switched network for carrying metro network traffic

  • Ya Zhang
  • Xu Zhou
  • Ning Deng
  • Sanjay K. Bose
  • Gangxiang ShenEmail author
Original Paper
  • 25 Downloads

Abstract

In the 5G era, metro optical networks would need to meet more stringent quality of service requirements. They would have to operate with high spectral efficiency but with low latency and low power consumption. For this, we introduced a new paradigm based on the elastic optical network, called ultra-dense wavelength switched network (UD-WSN) in Zhang et al. (Proceedings of the Asia Communications and Photonics Conference, 2016), Shen et al. (EEE Commun Mag 56(2):189–195, 2017), and Zhou et al. (IEEE/OSA J Lightw Technol 35(11):2063–2069, 2016). UD-WSN was verified to be efficient in terms of system cost, spectrum efficiency, power consumption, and service connection latency when compared to other popular architectures, such as pure optical transport networks (OTN) and conventional OTN over dense wavelength division multiplexing networks. This motivates us to explore further enhancements to UD-WSN in this paper for even better performance. Specifically, we consider a UD-WSN architecture without aggregation OTN switches to evaluate how the system cost can be reduced further by trading off the system performance. We also propose to implement partial OTN switching within the UD-WSN to exploit the benefit of traffic grooming to lower the system cost even further. Finally, we also implement spectrum defragmentation to improve the spectrum utilization of the system. These schemes are studied through simulations to verify their effectiveness.

Keywords

Ultra-dense wavelength switched network (UD-WSN) Metro optical network Partial OTN switching Spectrum defragmentation 

References

  1. 1.
    Zhang, Y., Zhou, X., Sheng, Y., Deng, N., Shen, G.: Spectrum defragmentation and partial OTN switching in ultra dense-wavelength switched network (UD-WSN). In: Proceedings of the 19th International Conference on Transparent Optical Network, pp. 1–4 (2017)Google Scholar
  2. 2.
    IHS Technology: Networking ports market tracker: 1G, 2.5G, 10G, 40G, 100G abstract (2016). https://technology.ihs.com/550534/networking-ports-1g-25g-10g-25g-40g-100g-market-tracker-regional-h1-2016. Accessed 21 Nov 2018
  3. 3.
    Freiberger, M.: In-network experiences with installed OTN switched metro core optical systems. In: Proceedings of the Optical Fiber Communication Conference Exhibition, pp. 1–3 (2015)Google Scholar
  4. 4.
    ITU-T SG15: Spectral grids for WDM applications: DWDM frequency grid. ITU-T G.694.1 (2012)Google Scholar
  5. 5.
    Zhang, Y., Zhou, X., Deng, N., Shen, G.: Ultra dense-wavelength switched network (UD-WSN): a cost, energy, and spectrum efficient metro network architecture. In: Proceedings of the Asia Communications and Photonics Conference, pp. 1–3 (2016)Google Scholar
  6. 6.
    Shen, G., Zhang, Y., Zhou, X., Sheng, Y., Deng, N., Ma, Y., Load, A.: Ultra-dense wavelength switched network: a special EON paradigm for metro optical networks. IEEE Commun. Mag. 56(2), 189–195 (2017)CrossRefGoogle Scholar
  7. 7.
    Zhou, X., Jia, W., Ma, Y., Deng, N., Shen, G., Lord, A.: An ultradense wavelength switched network. IEEE/OSA J. Lightw. Technol. 35(11), 2063–2069 (2016)CrossRefGoogle Scholar
  8. 8.
    Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)CrossRefGoogle Scholar
  9. 9.
    Sales, V., Segarra, J., Polo, V., Velásquez, J.C., Prat, J.: UDWDM-PON using low-cost coherent transceivers with limited tunability and heuristic DWA. IEEE/OSA J. Opt. Commun. Netw. 8(8), 582–599 (2016)CrossRefGoogle Scholar
  10. 10.
    Marom, D.M., Rudnick, R., Goldshtein, N., Golani, O., Sinefeld, D.: Realization of sub-1 GHz resolution photonic spectral processors for flexible optical networks. In: Proceedings of the 41th European Conference on Optical Communication, pp. 1–3 (2015)Google Scholar
  11. 11.
    Goldshtein, N., Sinefeld, D., Golani, O., Rudnick, R., Pascar, L., Zektzer, R., Marom, D.M.: Fine resolution photonic spectral processor using a waveguide grating router with permanent phase trimming. IEEE/OSA J. Lightw. Technol. 34(2), 379–385 (2016)CrossRefGoogle Scholar
  12. 12.
    Cai, A., Shen, G., Peng, L., Zukerman, M.: Novel node-arc model and multiiteration heuristics for static routing and spectrum assignment in elastic optical networks. IEEE/OSA J. Lightw. Technol. 31(21), 3402–3413 (2013)CrossRefGoogle Scholar
  13. 13.
    Wang, C., Shen, G., Bose, S.K.: Distance adaptive dynamic routing and spectrum allocation in elastic optical networks with shared backup path protection. IEEE J. Lightw. Technol. 33(14), 2955–2964 (2015)Google Scholar
  14. 14.
    Zhu, H., Zang, H., Zhu, K., Mukherjee, B.: A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM Trans. Netw. 11(2), 285–299 (2003)CrossRefGoogle Scholar
  15. 15.
    Wan, X., Li, Y., Zhang, H., Zheng, X.: Dynamic traffic grooming in flexible multi-layer IP/optical networks. IEEE Commun. Lett. 16(12), 2079–2082 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhang, S., Martel, C., Mukherjee, B.: Dynamic traffic grooming in elastic optical networks. IEEE J. Sel. Areas Commun. 31(1), 4–12 (2013)CrossRefGoogle Scholar
  17. 17.
    Cai, A., Shen, G., Peng, L.: Optimal planning for electronic traffic grooming in IP over elastic optical networks. In: Proceedings of the Asia Communications Photonics Conference, pp. 1–3 (2013)Google Scholar
  18. 18.
    Walklin, S.: Leaf-spine architecture for OTN switching. In: Proceedings of the International Conference on Computing Network Communication, pp. 95–99 (2017)Google Scholar
  19. 19.
    Vizcaíno, J.L., Ye, Y., López, V., Jiménez, T., Krummrich, P.M.: OTN switching for improved energy and spectral efficiency in WDM MLR networks. In: Proceedings of the Optical Fiber Communication Conference Exhibition, pp. 1–3 (2016)Google Scholar
  20. 20.
    Shen, G., Grover, W.D., Cheng, T.H., Bose, S.K.: Sparse placement of electronic switching nodes for low blocking in translucent optical networks. IEEE J. Opt. Netw. 1(12), 424–441 (2002)Google Scholar
  21. 21.
    Awwad, O., Al-fuquha, A.I., Guizani, M.: Genetic approach for traffic grooming, routing, and wavelength assignment in WDM optical networks with sparse grooming resources. In: Proceedings of the International Conference Communications, pp. 2447–2452 (2006)Google Scholar
  22. 22.
    Shen, G., Tucker, R.S.: Sparse traffic grooming in translucent optical networks. IEEE/OSA J. Lightw. Technol. 27(20), 4471–4479 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Kim, I., Zhang, Q., Palacharla, P., Sekiya, M.: A hitless defragmentation method for self-optimizing flexible grid optical networks. In: Proceedings of the 38th European Conference on Exhibition Optical Communications, pp. 1–3 (2012)Google Scholar
  24. 24.
    Yin, Y., Wen, K., Geisler, D.J., Liu, R., Yoo, S.J.B.: Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks. Opt. Exp. 20(2), 1798–1804 (2012)CrossRefGoogle Scholar
  25. 25.
    Cugini, F., Paolucci, F., Meloni, G., Berrettini, G., Secondini, M., Fresi, F., Sambo, N., Poti, L., Castoldi, P.: Push-pull defragmentation without traffic disruption in flexible grid optical networks. IEEE/OSA J. Lightw. Technol. 31(1), 125–133 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, R., Mukherjee, B.: Provisioning in elastic optical networks with non-disruptive defragmentation. IEEE/OSA J. Lightw. Technol. 31(15), 2491–2500 (2013)CrossRefGoogle Scholar
  27. 27.
    Wang, C., Shen, G., Chen, B., Peng, L.: Protection path-based hitless spectrum defragmentation in elastic optical networks: shared backup path protection. In: Proceedings of the Optical Fiber Communications Conference Exhibition, pp. 1–3 (2015)Google Scholar
  28. 28.
    Wang, C., Shen, G., Peng, L.: Protection lightpath-based hitless spectrum defragmentation for distance adaptive elastic optical networks. Opt. Exp. 24(5), 4497–4511 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ya Zhang
    • 1
  • Xu Zhou
    • 2
  • Ning Deng
    • 2
  • Sanjay K. Bose
    • 3
  • Gangxiang Shen
    • 1
    Email author
  1. 1.School of Electronic and Information EngineeringSoochow UniversitySuzhouPeople’s Republic of China
  2. 2.Networks Research DepartmentHuawei Technologies Co., LtdShenzhenPeople’s Republic of China
  3. 3.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations