Photonic Network Communications

, Volume 35, Issue 3, pp 364–373 | Cite as

Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation

  • Md. Saiful IslamEmail author
  • Jakeya Sultana
  • Mohsen Dorraki
  • Javid Atai
  • Mohammad Rakibul Islam
  • Alex Dinovitser
  • Brian Wai-Him Ng
  • Derek Abbott
Original Paper


In this paper, a hybrid-core circular cladded photonic crystal fiber is designed and analyzed for application in the terahertz frequency range. We introduce a rectangular structure in addition to a conventional hexagonal structure in the core to reduce the material absorption loss. The modal characteristics of the fiber have been investigated using full vector finite element method. Simulated results exhibit an ultra-low effective material loss of 0.035 cm\(^{-1}\) and ultra-flattened dispersion of 0.07 ps/THz/cm. Some other important fiber characteristics suitable for terahertz signal transmission including confinement loss, core power fraction, effective area and single-mode conditions of the fiber have also been investigated. In order to simplify design and facilitate fabrication, only circular shaped air holes have been employed. Due to its promising characteristics, the proposed waveguide may provide efficient transmission of broadband terahertz signals.


Optics Photonic crystal fiber Effective material loss Terahertz Dispersion 


  1. 1.
    Abbott, D., Zhang, X.C.: Scanning the issue: T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)CrossRefGoogle Scholar
  2. 2.
    Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B., Mickan, S.P., Fischer, B.M., Abbott, D.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)CrossRefGoogle Scholar
  3. 3.
    Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens 7(3), 234–245 (2017)CrossRefGoogle Scholar
  4. 4.
    Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss photonic crystal fiber. IEEE Photonics J. 4(6), 2315–2325 (2012)CrossRefGoogle Scholar
  5. 5.
    Byrne, M.B., Shaukat, M.U., Cunningham, J.E., Linfield, E.H., Davies, A.G.: Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro optic detection. Appl. Phys. Lett. 98(15), 151104 (2011)CrossRefGoogle Scholar
  6. 6.
    Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon 1, 97–105 (2007)CrossRefGoogle Scholar
  7. 7.
    Mantsch, H.H., Naumann, D.: Terahertz spectroscopy: the renaissance of far infrared spectroscopy. J. Mol. Struct. 964(1–3), 1–4 (2010)CrossRefGoogle Scholar
  8. 8.
    Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R.: Terahertz spectroscopy techniques for explosive detection. Anal. Bioanal. Chem. 395(2), 247–257 (2009)CrossRefGoogle Scholar
  9. 9.
    Pinto, D., Obayya, S.S.A.: Improved complex envelope alternative direction implicit finite difference time domain method for photonic bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)CrossRefGoogle Scholar
  10. 10.
    Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56, 3477–3483 (2017)CrossRefGoogle Scholar
  11. 11.
    Jin, Y.-S., Kim, G.-J., Jeon, S.-G.: Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 49(2), 513–517 (2006)Google Scholar
  12. 12.
    Wang, K., Mittleman, D.M.: Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004)CrossRefGoogle Scholar
  13. 13.
    Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)CrossRefGoogle Scholar
  14. 14.
    Chen, L., Chen, H., Kao, T., Lu, J., Sun, C.: Low-loss sub-wavelength plastic fiber for terahertz wave guiding. Opt. Lett. 31(3), 308–310 (2006)CrossRefGoogle Scholar
  15. 15.
    Lu, J.Y., Yu, C.P., Chang, H.C., Chen, H., Li, Y., Pan, C., Sun, C.: Terahertz air-core microstructure fiber. Appl. Phys. Lett. 92(6), 064105 (2008)CrossRefGoogle Scholar
  16. 16.
    Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 113514 (2007)CrossRefGoogle Scholar
  17. 17.
    Zhao, G., Mors, M.T., Wenckebach, T., Planken, P.C.M.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. B. 19(6), 1476–1479 (2002)CrossRefGoogle Scholar
  18. 18.
    Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(6), 961–963 (1997)CrossRefGoogle Scholar
  19. 19.
    Knight, J.C., Birks, T.A., Cregan, R.F.: Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)CrossRefGoogle Scholar
  20. 20.
    Lee, J.H., The, P.C., Yusoff, Z.: A holey fiber based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878 (2002)CrossRefGoogle Scholar
  21. 21.
    Lu, S., Li, W., Guo, H.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt. 50(30), 5798–5802 (2011)CrossRefGoogle Scholar
  22. 22.
    Ademgil, H., Haxha, S., Abdel Malek, F.: Highly nonlinear bending insensitive birefringent photonic crystal fibres. Sci. Res. 2(8), 608–616 (2010)Google Scholar
  23. 23.
    Hassani, A., Dupuis, A., Skorobogatiy, M.: Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)CrossRefGoogle Scholar
  24. 24.
    Hassani, A., Dupuis, A., Skorobogatiy, M.: Porous polymer fibers for low-loss terahertz guiding. Opt. Express 16(9), 6340–6351 (2008)CrossRefGoogle Scholar
  25. 25.
    Han, H., Park, H., Cho, M., Kim, J.: Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80(15), 2634–2636 (2002)CrossRefGoogle Scholar
  26. 26.
    Ung, B., Mazhorova, A., Dupuis, A., Rozé, M., Skorobogatiy, M.: Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19(26), B848–B861 (2011)CrossRefGoogle Scholar
  27. 27.
    Sultana, J., Islam, MdS, Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56(7), 076114 (2017)CrossRefGoogle Scholar
  28. 28.
    Islam, M.S., Sultana, J., Atai, J., Islam, M.R., Abbott, D.: Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Optik–Int. J. Light Electron Opt. 145, 398–406 (2017)CrossRefGoogle Scholar
  29. 29.
    Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)CrossRefGoogle Scholar
  30. 30.
    Kaijage, S.F., Ouyang, Z., Jim, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013)CrossRefGoogle Scholar
  31. 31.
    Islam, R., Hasanuzzaman, G.K.M., Habib, M.S., Rana, S., Khan, M.A.G.: Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt. Fiber Technol. 24, 38–43 (2015)CrossRefGoogle Scholar
  32. 32.
    Hasanuzzaman, G.K.M., Habib, S., Razzak, S.M.A.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)CrossRefGoogle Scholar
  33. 33.
    Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016)CrossRefGoogle Scholar
  34. 34.
    Islam, S., Islam, M.R., Faisal, M., Arefin, A.S.M.S., Rahman, H., Sultana, J., Rana, Sohel: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 55(7), 076117 (2016)CrossRefGoogle Scholar
  35. 35.
    Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol. Lett. 28(14), 1737–1740 (2016)CrossRefGoogle Scholar
  36. 36.
    Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017)CrossRefGoogle Scholar
  37. 37.
    Ponseca, C.S., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C.J., van Eijkelenborg, M.A.: Transmission of terahertz radiation using a micro-structured polymer optical fiber. Opt. Lett. 33(9), 902–904 (2008)CrossRefGoogle Scholar
  38. 38.
    Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43(2B), 317–319 (2004)CrossRefGoogle Scholar
  39. 39.
    Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken Jepsen, P.C.M., Bang, O., Uhd, P.: Bendable, low-loss TOPAS fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2004)CrossRefGoogle Scholar
  40. 40.
    Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)CrossRefGoogle Scholar
  41. 41.
    Argyros, A.: Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013, 785162 (2013)CrossRefGoogle Scholar
  42. 42.
    Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 24, 6–11 (2016)Google Scholar
  43. 43.
    Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Yuan, W., Bang, O.: High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4785 (2013)CrossRefGoogle Scholar
  44. 44.
    Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjaer, E.M., Lindvold, L.: Localized bio-sensing with TOPAS micro-structured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)CrossRefGoogle Scholar
  45. 45.
    Balakrishnan, J., Fischer, B.M., Abbott, D.: Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl. Opt. 48(12), 2262–2266 (2009)CrossRefGoogle Scholar
  46. 46.
    Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., Bang, O.: Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016)CrossRefGoogle Scholar
  47. 47.
    Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low loss hybrid core porous fiber for broadband applications. Appl. Opt. 56(9), 1232–1237 (2017)Google Scholar
  48. 48.
    Bai, J.J., Li, J.N., Zhang, H., Fang, H.: A porous terahertz fiber with randomly distributed air holes. Appl. Phys. B 103(2), 381–386 (2011)CrossRefGoogle Scholar
  49. 49.
    Kiang, K.M., Frampton, K., Monro, T.M., Moore, R., Tucknott, J., Hewak, D.W., Richardson, D.J., Rutt, H.N.: Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546–547 (2002)CrossRefGoogle Scholar
  50. 50.
    Bisen, R. T., Trevor, D. J.: Solgel-derived micro-structured fibers: fabrication and characterization, Opt. Fiber Commun. Conference., Technical Digest. OFC/NFOEC. (2005)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The University of AdelaideSchool of Electrical and Electronic EngineeringAdelaideAustralia
  2. 2.Islamic University of TechnologyElectrical and Electronic EngineeringGazipurBangladesh
  3. 3.The University of SydneySchool of Electrical and Information EngineeringSydneyAustralia

Personalised recommendations