Photonic Network Communications

, Volume 34, Issue 2, pp 241–247 | Cite as

Narrow-core hollow optical waveguide with nanostructured SOI as ultra-low loss platform for efficient photodetection

Original Paper
  • 92 Downloads

Abstract

A nanostructured hollow optical waveguide based on high-index contrast grating (HCG) embedded SOI is proposed. An ultra-low propagation loss of 1.22 dB/m even at narrow, 1-\(\upmu \)m thick, air-core is reported. A high-performance photodetection is realized by the introduction of hollow core in form of intrinsic region in the photodetection (PIN) layer within HCG-assisted narrow-core waveguide. A sufficiently high responsivity of 0.8 A/W and quantum efficiency of 64% are obtained at 1550-nm which is possible because of the presence of surface modes within HCG which get coupled in the photodetection layer leading to a strong optical confinement in that layer. High reflectivity, small penetration length and coupling of lateral surface modes in HCG make it possible to offer improved waveguiding and hence photodetection.

Keywords

Gratings Photonic crystal waveguide Silicon Optical detectors 

References

  1. 1.
    Umbach, A.: High-speed integrated photodetectors for 40 Gb/s applications. Proc. SPIE 5246, 434–442 (2004)CrossRefGoogle Scholar
  2. 2.
    Notomi, M., Shinya, A., Nozaki, K., Tanabe, T., Matsuo, S., Kuramochi, E., Sato, T., Taniyama, H., Sumikura, H.: Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip. IET Circuits Devices Syst. 5, 84–93 (2011)CrossRefGoogle Scholar
  3. 3.
    DeRose, C.T., Trotter, D.C., Zortman, W.A., Starbuck, A.L., Fisher, M., Watts, M.R., Davids, P.S.: Ultracompact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt. Express 19, 24897–24904 (2011)CrossRefGoogle Scholar
  4. 4.
    Assefa, S., Xia, F.N., Green, W.M.J., Schow, C.L., Rylyakov, A.V., Vlasov, Y.A.: CMOS-integrated optical receivers for on-chip interconnects. IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010)CrossRefGoogle Scholar
  5. 5.
    Nozaki, K., Matsuo, S., Takeda, K., Sato, T., Kuramochi, E., Notomi, M.: InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure. Opt. Express 21, 19022–19028 (2013)CrossRefGoogle Scholar
  6. 6.
    Kaur, J., Kumar, M., Kaushik, B.K.: Electrical tuning of optical delay in graphene-based photonic crystal waveguide. IEEE J. Quantum Elecron. 51, 1–5 (2015)Google Scholar
  7. 7.
    Miller, D.A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)CrossRefGoogle Scholar
  8. 8.
    Roelkens, G., Brouckaert, J., Taillaert, D., Dumon, P., Bogaerts, W., Thourhout, D.V., Baets, R.: Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt. Express 13, 10102–10108 (2005)CrossRefGoogle Scholar
  9. 9.
    Chen, L., Dong, P., Lipson, M.: High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 16, 11513–11518 (2008)CrossRefGoogle Scholar
  10. 10.
    Hsu, S., Chen, Y., You, H.: Waveguide coupled photodiode using reflector and metal coplanar waveguide for optical triplxing applications. Opt. Express 18, 9303–9313 (2010)CrossRefGoogle Scholar
  11. 11.
    Ahn, D., Kimerling, L.C., Michel, J.: Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Gephotodetectors on silicon-on-insulator/germanium-on-insulator substrates. J. Appl. Phys. 110, 083115-1–083115-9 (2011)Google Scholar
  12. 12.
    Gassenq, A., Hattasan, N., Cerutti, L., Rodriguez, J.B., Tournie, E., Roelkens, G.: Study of evanescently-coupled and grating assisted GaInAsSb photodiodes integrated on a silicon photonic chip. Opt. Express 20, 11665–11672 (2012)CrossRefGoogle Scholar
  13. 13.
    Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J., Levy, U.: Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594–28602 (2012)CrossRefGoogle Scholar
  14. 14.
    Spuesens, T., Mandorlo, F., Rojo-Romeo, P., Régreny, P., Olivier, N., Fédeli, J.M., Thourhout, D.V.: Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line. J. Lightwave Technol. 30, 1764–1770 (2012)CrossRefGoogle Scholar
  15. 15.
    Yang, W., Ferrara, J., Grutter, K., Yeh, A., Chase, C., Yue, Y., Willner, A.E., Wu, M.C., Chang-Hasnain, C.J.: Low loss hollow-core waveguide on a silicon substrate. Nanophotonic 1, 23–29 (2012)CrossRefGoogle Scholar
  16. 16.
    Kumar, M.: Narrow bandwidth and polarization independent design of hollow waveguide in-plane mirror with ultrawide tuning-range. Appl. Opt. 53, 1847–51 (2014)CrossRefGoogle Scholar
  17. 17.
    Bicknell, R., King, L., Otis, C.E., Yeo, J.S., Meyer, N., Kornilovitch, P., Lerner, S., Seals, L.: Fabrication and characterization of hollow metal waveguides for optical interconnect applications. Appl. Phys. A 95, 1059–1066 (2009)CrossRefGoogle Scholar
  18. 18.
    Miura, T., Koyama, F., Matsutani, A.: Modeling and fabrication of hollow optical waveguide for photonic integrated circuits. Jpn. J. Appl. Phys. 41, 4785–4789 (2002)CrossRefGoogle Scholar
  19. 19.
    Yang, W., Conkey, D.B., Wu, B., Yin, D., Hawkins, A.R., Schmidt, H.: Atomic spectroscopy on a chip. Nat. Photonics 1, 331–335 (2007)CrossRefGoogle Scholar
  20. 20.
    Kumar, M., Chase, C., Karagodsky, V., Sakaguchi, T., Koyama, F., Chang-Hasnain, C.J.: Low birefringence and 2-D optical confinement of hollow waveguide with distributed bragg reflector and high index contrast grating. IEEE Photonics J. 1, 135–143 (2009)CrossRefGoogle Scholar
  21. 21.
    Kumar, M., Sakagichi, T., Koyama, F.: Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide. Appl. Phys. Lett. 94, 061112-1–061112-3 (2009)Google Scholar
  22. 22.
    Chang-Hasnain, C.J., Zhou, Y., Huang, M.C.Y., Chase, C.: High-contrast-grating VCSELs. IEEE J. Sel. Topics Quantum Electron. 15, 869–878 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhou, Y., Karagodsky, V., Pesala, B., Sedgwick, F.G., Chang-Hasnain, C.J.: A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. Opt. Express 17, 1508–1517 (2009)CrossRefGoogle Scholar
  24. 24.
    Chang-Hasnain, C.J., Yang, W.: High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4, 379–440 (2012)CrossRefGoogle Scholar
  25. 25.
    Kang, H., Kumar, M.: Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI. Opt. Commun. 366, 266–270 (2016)CrossRefGoogle Scholar
  26. 26.
    Glytsis, E.N., Jokerst, N.M., Villalaz, R.A., Cho, S.Y.: Substrate-embedded and flip-chip-bonded photodetector polymer-based optical interconnects: analysis, design, and performance. J. Lightwave Technol. 21, 2382–2394 (2003)CrossRefGoogle Scholar
  27. 27.
    de Cumis, U.S., Xu, J.H., Bledt, C.M., Harrington, J.A., Tredicucci, A., Vitiello, M.S.: Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared. J. Infrared Millim. Terahertz Waves 33, 319–326 (2012)CrossRefGoogle Scholar
  28. 28.
    Bauters, J.F., Davenport, M.L., Heck, M.J.R., Doylend, J.K., Chen, A., Fang, A.W., Bowers, J.E.: Silicon on ultra-low-loss waveguide photonic integration platform. Opt. Express 1, 544–555 (2013)CrossRefGoogle Scholar
  29. 29.
    Miura, T., Koyama, F., Matsutani, A.: Modeling and fabrication of hollow optical waveguide for photonic integrated circuits. Jpn. J. Appl. Phys. 41, 4785–4789 (2002)CrossRefGoogle Scholar
  30. 30.
    Mutlu, M., Akosman, A.E., Kurt, G., Gokkavas, M., Ozbay, E.: Experimental realization of a high-contrast grating based broadband quarter-wave plate. Opt. Express 20, 27966–27973 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Optoelectronics Research Laboratory, Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia
  2. 2.Optoelectronic Nanodevice Research LaboratoryIndian Institute of Technology (IIT)IndoreIndia

Personalised recommendations