Advertisement

Photonic Network Communications

, Volume 33, Issue 3, pp 348–355 | Cite as

Modeling and analysis of red emission in \(\hbox {Pr}^{3+}\)-doped fiber lasers

  • Mahdi Barati Mohammad Panah
  • Mahdi Zavvari
Article
  • 105 Downloads

Abstract

In order to improve the performance of the \(\hbox {Pr}^{3+}\)-doped fiber laser, the optimum fiber length and reflectivity of mirrors, the maximum output power, the lasing threshold, and the slope efficiency are needed to be estimated. In this work, a \(\hbox {Pr}^{3+}\)-doped fiber laser is considered with fiber Bragg gratings (FBG) as reflectors and an injected pump power in one side. To do so, the rate and power propagation equations of the \(\hbox {Pr}^{3+}\)-doped fiber laser are solved numerically by finite difference method and the boundary conditions are obtained by shooting method in an iterative process. The effect of some structural parameters such as the laser background loss, the pump power, the \(\hbox {Pr}^{3+}\) dopant concentration, and the reflectivity coefficient of FBG2 on the performance of laser is studied, and the optimum values for fiber length and reflectivity of FBG2 are obtained.

Keywords

Fiber lasers Fluoride glass Praseodymium-doped fiber Continuous wave Optimum fiber length 

References

  1. 1.
    Canning, J.: Fibre lasers and related technologies. Opt. Lasers Eng. 44, 647–676 (2006)CrossRefGoogle Scholar
  2. 2.
    Fujimotoa, Y., Nakanishib, J., Yamadab, T., Ishiic, O., Yamazaki, Ma.: Visible fiber lasers excited by GaN laser diodes. Prog. Quantum Electron. 37, 185–214 (2013)CrossRefGoogle Scholar
  3. 3.
    Lousteau, J., Boetti, N.G., Negro, D., Mura, E., Scarpignato, G.C., Perrone, G., Milanese, D.: Photonic glasses for IR and mid-IR spectral range. In: International Conference on Space Optics, pp. 1–5 (2012)Google Scholar
  4. 4.
    Hewak, D.W., Deol, R.S., Wang, J., Wylangowski, G., Medeiros, A., Samson, B., Laming, R.I., Brocklesby, W.S., Payne, D.N., Jha, A., Poulain, M., Otero, S., Surinach, S., Baro, M.D.: Low phonon-energy glasses for efficient 1.3 \(\mu \)m optical fibre amplifiers. Electron. Lett. 29, 237–238 (1993)CrossRefGoogle Scholar
  5. 5.
    Poulain, M., Poulain, M., Lucas, J., Brun, P.: Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope Au Nd\(^{3+}\). Mater. Res. Bull. 10, 243 (1975)Google Scholar
  6. 6.
    Manzani, D., Paboeuf, D., Ribeiroa, S.J.L., Goldner, P., Bretenaker, F.: Orange emission in \(\text{ Pr }^{3+}\)-doped fluoroindate glasses. Opt. Mater. 35, 383–386 (2012)CrossRefGoogle Scholar
  7. 7.
    Fujimoto, Y., Ishii, O., Yamazaki, M.: Multi-colour laser oscillation in \(\text{ Pr }^{3+}\)-doped fluoro-aluminate glass fibre pumped by 442.6 nm GaN-semiconductor laser. Electron. Lett. 45, 1301–1302 (2009)CrossRefGoogle Scholar
  8. 8.
    Miyoshi, T., Kozaki, T., Yanamoto, T., Fujimura, Y., Nagahama, S., Mukai, T.: GaN-based high-output-power blue laser diodes for display applications. J. Soc. Inf. Displ. 15, 157–160 (2007)Google Scholar
  9. 9.
    Okamoto, H., Kasuga, K., Hara, I., Kubota, Y.: Visible-NIR tunable \(\text{ Pr }^{3+}\)-doped fiber laser pumped by a GaN laser diode. Opt. Express 17, 20227–20232 (2009)CrossRefGoogle Scholar
  10. 10.
    Shi, J., Tang, M., Fu, S., Shum, P., Liu, D.: Modeling and analysis of fiber Bragg grating based visible \(\text{ Pr }^{3+}\) doped fiber lasers. J. Lightwave Technol. 32, 27–34 (2014)CrossRefGoogle Scholar
  11. 11.
    Xu, B., et al.: Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607 nm. Opt. Commun. 305, 96–99 (2013)CrossRefGoogle Scholar
  12. 12.
    Liu, Z., et al.: Diode-pumped \(\text{ Pr }^{3+}\):LiYF4 continuous-wave deep red laser at 698 nm. J. Opt. Soc. Am. 30, 302–305 (2013)CrossRefGoogle Scholar
  13. 13.
    Qu, B., Xu, B., Cheng, Y., Luo, S., Xu, H., Bu, Y., Camy, P., Doualan, J., Moncorgé, R., Cai, Z.: InGaN-LD pumped Pr3:LiYF4 continuous-wave laser at 915 nm. IEEE Photon. J. 6, 1–11 (2014)CrossRefGoogle Scholar
  14. 14.
    Mihailov, S.J.: Fiber Bragg grating sensors for harsh environments. Sensors 12, 1898–1918 (2012)CrossRefGoogle Scholar
  15. 15.
    Weichmann, U., Baier, J., Bengoechea, J., Moench, H.: GaN-diode pumped \(\text{ Pr }^{3+}\): ZBLAN fiber-lasers for the visible wavelength range. Presented at the European Conference on Lasers and Electro Optics/Int. Quantum Electron. Conference, Munich, Germany (2007)Google Scholar
  16. 16.
    Okamoto, H., Kasuga, K., Hara, I., Kubota, Y.: Ultra-wideband tunable RGB fiber laser. Presented at European Conference on Lasers and Electro Optics/Int. Quantum Electron. Conference, Baltimore, MD, USA (2009)Google Scholar
  17. 17.
    Okamoto, H., Kasuga, K., Kubota, Y.: Efficient 521 nm all-fiber laser: splicing \(\text{ Pr }^{3+}\) -doped ZBLAN fiber to end-coated silica fiber. Opt. Lett. 36, 1470–1472 (2011)CrossRefGoogle Scholar
  18. 18.
    Nakanishi, J., Yamada, T., Fujitomo, Y., Ishii, O., and Yamazaki, M.: Subwatt Output power at 638 nm in wavelength by direct oscillation with \(\text{ Pr }^{3+}\)-doped waterproof fluoro-aluminate glass fiber laser. Presented at the European Conference on Lasers and Electro Optics/Int. Quantum Electron. Conference, Munich, Germany (2011)Google Scholar
  19. 19.
    Nakanishi, J., Horiuchi, Y., Yamada, T., Ishii, O., Yamazaki, M., Yoshida, M., Fujimoto, Y.: High-power direct green laser oscillation of 598 mW in \(\text{ Pr }^{3+}\) doped waterproof fluoroaluminate glass fiber excited by twopolarization- combined GaN laser diodes. Opt. Lett. 36, 1836–1838 (2011)CrossRefGoogle Scholar
  20. 20.
    Nakanishi, J., Yamada, T., Fujimoto, Y., Ishii, O., Yamazaki, M.: High-power red laser oscillation of 311.4 mW in Pr\(^{3+}\)-doped waterproof fluoro-aluminate glass fibre excited by GaN laser diode. Electron. Lett. 46, 1285–1286 (2010)CrossRefGoogle Scholar
  21. 21.
    Tropper, A.C., Carter, J.N., Lauder, R.D.T., Hanna, D.C., Davey, S.T., Szebesta, D.: Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser. J. Opt. Soc. Am. B 11, 886–893 (1994)CrossRefGoogle Scholar
  22. 22.
    Zhao, Y., Fleming, S.: Theory of \(\text{ Pr }^{3+}\) -doped fluoride fiber upconversion lasers. IEEE J. Quantum Electron. 33, 905–915 (1997)CrossRefGoogle Scholar
  23. 23.
    Eyal, M., Greenberg, E., Reisfeld, R., Spector, N.: Spectroscopy of praseodymium (III) in zirconium fluoride glass. Chem. Phys. Lett. 117, 108–114 (1985)CrossRefGoogle Scholar
  24. 24.
    Fujimoto, Y., Yamazaki, M.: Stimulated emission cross sections of Pr doped fluoride glass evaluated by judd-ofelt analysis. Presented at the European Conference on Lasers and Electro Optics/Int. Quantum Electron. Conference, Munich, Germany (2009)Google Scholar
  25. 25.
    Hu, X., Ning, T., Pei, L., Chen, Q., Li, J.: Excellent initial guess functions for simple shooting method in \(\text{ Yb }^{3+}\)-doped fiber lasers. Opt. Fiber Technol. 20, 358–364 (2014)CrossRefGoogle Scholar
  26. 26.
    Hu, X., Ning, T., Pei, L., Chen, Q., Li, J., zheng, J., Zhang, C.: Adaptive shooting method for 4-point side-pumping high power \(\text{ Yb }^{3+}\)-doped double-clad fiber lasers. Opt. Fiber Technol. 22, 13–22 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIslamic Azad University, Tabriz BranchTabrizIran
  2. 2.Department of Electrical EngineeringIslamic Azad University, Urmia BranchUrmiaIran

Personalised recommendations