Photonic Network Communications

, Volume 33, Issue 2, pp 87–101 | Cite as

A survey of hybrid optical data center network architectures

Original Paper

Abstract

This paper presents a survey of data center network architectures that use both optical and packet switching components. Various proposed architectures and their corresponding network operation details are discussed. Electronic processing-based packet switch architectures and hybrid optical–electronic-based switch architectures are presented. These hybrid optical switch architectures use optical switching elements in addition to traditional electronic processing entities. The choice of components used for realizing functionality including the network interfaces, buffers, lookup elements and the switching fabrics have been analyzed. These component choices are summarized for different architectures. A qualitative comparison of the various architectures is also presented.

Keywords

Data center networks Network architecture Optical networks Opto-electronic networks Packet switching Optical switching 

References

  1. 1.
    Liu, Y., Muppala, J., Veeraraghavan, M., Lin, D., Hamdi, M.: Data Center Networks. Springer, Berlin (2013)CrossRefGoogle Scholar
  2. 2.
    Koomey, J.: Growth in data center electricity use 2005 to 2010. InL A report by Analytical Press, completed at the request of The New York Times (2011)Google Scholar
  3. 3.
    Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 14(4), 1021–1036 (2012)CrossRefGoogle Scholar
  4. 4.
    Yoo, S.,Yin, Y., Proietti, R.: Elastic optical networking and low-latency high-radix optical switches for future cloud computing. In: IEEE international conference on computing, networking and communications (ICNC), pp. 1097–1101 (2013)Google Scholar
  5. 5.
    Yin, Y., Proietti, R., Ye, X., Nitta, C., Akella, V., Yoo, S.: LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409–3600409 (2013)CrossRefGoogle Scholar
  6. 6.
    Farrington, N.,Porter, G.,Radhakrishnan, S., Bazzaz, H.H.,Subramanya, V.,Fainman, Y.,Papen, G.,Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. In: Proceedings of ACM SIGCOMM, pp. 339–350 (2011)Google Scholar
  7. 7.
    Xi, K., Kao, Y.-H., Chao, H.: A petabit bufferless optical switch for data center networks. In: Kachris, C., Bergman, K., Tomkos, I. (eds.) Optical Interconnects for Future Data Center Networks. Optical Networks, pp. 135–154. Springer, Berlin (2013)CrossRefGoogle Scholar
  8. 8.
    Wang, G., Andersen, D.G.,Kaminsky, M. Papagiannaki, K., Ng, T., Kozuch, M., Ryan, M.: c-Through: Part-time optics in data centers. In: Proceedings of ACM SIGCOMM, pp. 327–338 (2010)Google Scholar
  9. 9.
    Fiorani, M., Aleksic, S., Casoni, M., Wosinska, L., Chen, J.: Energy-efficient elastic optical interconnect architecture for data centers. IEEE Commun. Lett. 18, 1531–1534 (2014)CrossRefGoogle Scholar
  10. 10.
    Gumaste, A., Bheri, B.M.K.: On the architectural considerations of the fission (flexible interconnection of scalable systems integrated using optical networks) framework for data-centers. In: 17th International Conference on Optical Network Design and Modeling (ONDM), pp. 23–28, IEEE (2013)Google Scholar
  11. 11.
    Sankaran, G.C., Sivalingam, K.M.: Optical traffic grooming based data center networks: node architecture and comparison. IEEE J. Sel. Areas Commun. Ser. Green. Commun. Netw. (2016). doi:10.1109/JSAC.2016.2520214 Google Scholar
  12. 12.
    Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., Fugal, H.: Fastpass: a centralized “Zero-queue” Datacenter Network. In: Proceedings of ACM SIGCOMM, pp. 307–318 (2014)Google Scholar
  13. 13.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)CrossRefGoogle Scholar
  14. 14.
    Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: BCube: a high performance, server-centric network architecture for modular data centers. In: Proceedings of ACM SIGCOMM, pp. 63–74 (2009)Google Scholar
  15. 15.
    Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: a scalable and fault-tolerant network structure for data centers. In: Proceedings of ACM SIGCOMM, pp. 75–86 (2008)Google Scholar
  16. 16.
    Yao, F., Wu, J., Venkataramani, G., Subramaniam, S.: A comparative analysis of data center network architectures. In: IEEE International Conference on Communications (ICC), pp. 3106–3111 (2014)Google Scholar
  17. 17.
    Joshi, S.C., Sivalingam, K.M.: Fault tolerance mechanisms for virtual data center architectures. Springer Photonic Netw. Commun. J. 28(2), 154–164 (2014)CrossRefGoogle Scholar
  18. 18.
    Cisco: 80-Channel Wavelength Cross-Connect Card for the Cisco ONS 15454 Multiservice Transport Platform (2010). http://www.cisco.com/c/en/us/products/collateral/optical-networking/ons-15454-series-multiservice-provisioning-platforms/datasheet_c78-598521.html [Accessed:23 May 2016]
  19. 19.
    Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective. Morgan Kaufmann, Burlington (2009)Google Scholar
  20. 20.
    Gerstel, O., Jinno, M., Lord, A., Yoo, S.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), s12–s20 (2012)CrossRefGoogle Scholar
  21. 21.
    Cao, Z., Proietti, R., Yoo, S.: Hi-lion: hierarchical large-scale interconnection optical network with awgrs [invited]. J. Opt. Commun. Netw. 7(1), A97–A105 (2015)CrossRefGoogle Scholar
  22. 22.
    Proietti, R., Yin, Y., Yu, R., Nitta, C.J., Akella, V., Mineo, C., Yoo, S.B.: Scalable optical interconnect architecture using awgr-based tonak lion switch with limited number of wavelengths. J. Lightwave Technol. 31(24), 4087–4097 (2013)CrossRefGoogle Scholar
  23. 23.
    Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., Wen, X., Chen, Y.: OSA: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw.: TON 22(2), 498–511 (2014)CrossRefGoogle Scholar
  24. 24.
    Chen, K., Wen, X., Ma, X., Chen, Y., Xia, Y., Hu, C., Dong, Q.: WaveCube: a scalable, fault-tolerant, high-performance optical data center architecture. In: Proceedings of IEEE INFOCOM, vol 2015, pp. 1903–1911 (2015)Google Scholar
  25. 25.
    Xia, Y., Ng, T., Sun, X.S.: Blast: accelerating high-performance data analytics applications by optical multicast. In: Proceedings of IEEE INFOCOM, vol 2015, pp. 1930–1938 (2015)Google Scholar
  26. 26.
    Alam, M.S., Baker, A.: Photonic MEMS based reconfigurable switch for multicast communication systems. In: Proceedings of the 4th National Conference on Telecommunication Technology (NCTT), pp. 171–175, IEEE (2003)Google Scholar
  27. 27.
    Wang, H., Chen, C., Sripanidkulchai, K., Sahu, S., Bergman, K.: Dynamically reconfigurable photonic resources for optically connected data center networks. In: Optical Fiber Communication Conference, pp. OTu1B-2, Optical Society of America (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ganesh C. Sankaran
    • 1
    • 2
    • 3
  • Krishna M. Sivalingam
    • 1
    • 3
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.HCL Technologies LtdChennaiIndia
  3. 3.India-UK Advanced Technology Centre of Excellence in Next Generation Networks, Systems and Services (IU-ATC)ChennaiIndia

Personalised recommendations