Advertisement

Photonic Network Communications

, Volume 32, Issue 2, pp 197–203 | Cite as

Optical time-division multiplexing signal processing using electro-optic modulators

  • Li Huo
  • Dong Wang
  • Qiang Wang
  • Yanfei Xing
  • Xiangyu Jiang
  • Caiyun Lou
Article

Abstract

We present some optical signal processing methods for optical time-division multiplexing, based on electro-optic modulators. Dual-parallel Mach–Zehnder modulator and time-lens-based signal processing for optical frequency comb generation, optical Nyquist pulse generation and time-domain demultiplexing are realized. Multifunctional optoelectronic oscillators which are capable of performing simultaneous electrical clock recovery, optical clock recovery and demultiplexing are demonstrated with modulators embedded as the key components.

Keywords

Modulator Demultiplexing Opto-electronic oscillator Time-lens 

Notes

Acknowledgments

This work is supported by “973” Major State Basic Research Development Program of China (No. 2011CB301703) and the National Natural Science Foundation of China (No. 61275032) and Tsinghua University Initiative Scientific Research Program.

References

  1. 1.
    Mazurczyk M., Foursa D. G., Batshon H. G., Zhang H., Davidson C. R., Cai J. X., Pilipetskii A., Mohs G., Bergano N. S.: 30 Tb/s transmission over 6,630 km using 16QAM signals at 6.1 bits/s/Hz spectral efficiency. In: Proc. ECOC2012, Th.3.C.2 (2012)Google Scholar
  2. 2.
    Ellis, A.D., Zhao, J., Cotter, D.: Approaching the non-linear Shannon limit. J. Lightwave Technol. 28, 423–433 (2010)CrossRefGoogle Scholar
  3. 3.
    Sakaguchi J., Puttnam B. J., Klaus W., Awaji Y., Wada N., Kanno A., Kawanishi T., Imamura K., Inaba H., Mukasa K., Sugizaki R., Kobayashi T., Watanabe M.: 19-core fiber transmission of 19\(\times \)100\(\times \)172-Gbit/s SDM-WDM-PDM-QPSK signals at 305Tb/s. In: Proc. OFC2012, PDP5C.1 (2012)Google Scholar
  4. 4.
    Randel, S., Ryf, R., Sierra, A., Winzer, P.J., Gnauck, A.H., Bolle, C.A., Essiambre, R.J., Peckham, D.W., McCurdy, A., Lingle, R.: 6\(\times \)56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6\(\times \)6 MIMO equalization. Opt. Express 19, 16697–16707 (2011)CrossRefGoogle Scholar
  5. 5.
    Ji, H., Galili, M., Hu, H., Pu, M., Oxenlowe, L.K., Yvind, K.: 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon Technol. Lett. 22, 1762–1764 (2011)CrossRefGoogle Scholar
  6. 6.
    Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon 4, 518–526 (2010)CrossRefGoogle Scholar
  7. 7.
    Xiao, X., Xu, H., Li, X., Li, Z., Chu, T., Yu, Y., Yu, J.: High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt. Express 21, 4116–4125 (2013)CrossRefGoogle Scholar
  8. 8.
    Dong, P., Xie, C., Buhl, L.L., Chen, Y., Sinsky, J.H., Raybon, G.: Silicon in-phase/quadrature modulator with on-chip optical equalizer. J. Lightwave Technol. 33, 1191–1196 (2015)CrossRefGoogle Scholar
  9. 9.
    Nakazawa, M., Hirooka, T., Ruan, P., Guan, P.: Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train. Opt. Express 20, 1129–1140 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang, Q., Huo, L., Xing, Y., Zhou, B.: Flexible ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator. Opt. Lett. 39, 3050–3053 (2014)CrossRefGoogle Scholar
  11. 11.
    Howe, J.V., Xu, C.: Ultrafast optical signal processing based upon space-time dualities. J. Lightwave Technol. 24, 2649–2662 (2006)CrossRefGoogle Scholar
  12. 12.
    Newbury, N.R.: Searching for applications with a fine-tooth comb. Nat. Photon 5, 186–188 (2011)CrossRefGoogle Scholar
  13. 13.
    Xing, Y., Wang, Q., Huo, L., Lou, C.: Frequency chirp linearization for ultraflat optical frequency comb generation based on group velocity dispersion. Opt. Lett. 38, 2188–2190 (2013)CrossRefGoogle Scholar
  14. 14.
    Wang, D., Huo, L., Xing, Y., Jiang, X., Lou, C.: Optical Nyquist pulse generation using a time lens with spectral slicing. Opt. Express 23, 4329–4339 (2015)Google Scholar
  15. 15.
    Xing, Y., Wang, Q., Huo, L., Lou, C.: Optical time-division demultiplexing Using a time-lens assisted Mach-Zehnder modulator. IEEE Photon Technol. Lett. 25, 1503–1505 (2013)CrossRefGoogle Scholar
  16. 16.
    Yao, X.S., Maleki, L.: High frequency optical subcarrier generator. Electron. Lett. 30, 1525–1526 (1994)CrossRefGoogle Scholar
  17. 17.
    Tsuchida, H., Suzuki, M.: 40-Gb/s optical clock recovery using an injectioned-locked optoelectronic oscillator. IEEE Photon Technol. Lett. 17, 211–213 (2005)CrossRefGoogle Scholar
  18. 18.
    Lasri, J., Devgan, P., Tang, R., Kumar, P.: Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator. IEEE Photon Technol. Lett. 16, 263–265 (2004)CrossRefGoogle Scholar
  19. 19.
    Hu, Z., Chou, H., Bowers, J.E., Blumenthal, D.J.: 40-Gb/s optical clock recovery using a compact traveling-wave electroabsorption modulator-based ring oscillator. IEEE Photon Technol. Lett. 16, 1376–1378 (2004)CrossRefGoogle Scholar
  20. 20.
    Xing Y., Huo L., Wang Q., Jiang X., Li H., Lou C.: Time-lens based optoelectronic oscillator for simultaneous clock recovery and demultiplexing of OTDM signal. In: Proc. ECOC2013, 1023-1025 (2013)Google Scholar
  21. 21.
    Wang, Q., Huo, L., Xing, Y., Lou, C., Zhou, B.: Effective optical clock recovery and simultaneous fourfold demultiplexing of OTDM signal using an optoelectonic oscillator. Opt. Express 21, 30000–30006 (2013)CrossRefGoogle Scholar
  22. 22.
    Wang, Q., Huo, L., Xing, Y., Lou, C., Wang, D., Chen, X., Zhou, B.: Simultaneous prescaled and frequency-doubled clock recovery using an injection-locked optoelectronic oscillator. Opt. Commun. 320, 22–26 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Li Huo
    • 1
  • Dong Wang
    • 1
  • Qiang Wang
    • 1
  • Yanfei Xing
    • 1
  • Xiangyu Jiang
    • 1
  • Caiyun Lou
    • 1
  1. 1.State Key Laboratory on Integrated Optoelectronics, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations