Photonic Network Communications

, Volume 32, Issue 2, pp 224–229 | Cite as

All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement

  • Chao Luo
  • Ping Lu
  • Xin Fu
  • Jing Chen
  • Shun Wang
  • Chi Zhang
  • Deming Liu
  • Jiangshan Zhang


An all-fiber sensor based on a single-mode–few-mode–single-mode fiber offset splicing structure cascaded with long-period fiber grating is proposed and demonstrated for curvature and acoustic signal measurement. High-order mode is inspired in the few-mode fiber by the offset splicing structure and coupled into the LPFG, resulting in a splitting into two dips of LPFG attenuation band, which are more sensitive to the external environment change. The results of the curvature sensing experiment show that the intensity of the two resonant dips has a linear response to curvature in the range of 0.124–0.304 \({\hbox {m}}^{-1}\), and the sensitivity is about 93.01 \({\hbox {dB/m}}^{-1}\), which is one order of magnitude higher than congeneric curvature sensors demonstrated by other researchers before. Based on the curvature sensing mechanism, the sensor is also demonstrated for acoustic measurement in the range 110–230 Hz. The sensor shows a sensitivity of about 15 mV/Pa at 110 Hz and 4.5 mV/Pa at other frequencies. High sensitivity and easy fabrication make it a preferable candidate for curvature and acoustic sensing in the field of structural health monitoring.


Few-mode fiber Long-period fiber grating Offset splicing Curvature Acoustic Transmission dip 



This work is supported by a Grant (Nos. 61290315 and 61275083) from Natural Science Foundation of China and a Grant (HUST: No. 2014CG002) from the Fundamental Research Funds for the Central Universities.


  1. 1.
    Hochreiner, H., Cada, M., Wentzell, P.D.: Modeling the response of a long-period fiber grating to ambient refractive index change in chemical sensing applications. J. Lightwave Technol. 26(13), 1986–1992 (2008)CrossRefGoogle Scholar
  2. 2.
    Tanaka, S., Wada, A., Takahashi, N.: Highly sensitive operation of LPG vibration sensor using bending-induced spectral change. In: 21st International Conference on Optical Fibre Sensors (OFS21). International Society for Optics and Photonics (2011)Google Scholar
  3. 3.
    Yang, Y., Gu, Z.: Temperature and bending simultaneous sensing properties of cascaded long-and short-period gratings. Appl. Opt. 53(2), 165–173 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gaudron, J.-O., et al.: LPG-based optical fibre sensor for acoustic wave detection. Sens. Actuators A Phys. 173(1), 97–101 (2012)CrossRefGoogle Scholar
  5. 5.
    Bhatia, V., Vengsarkar, A.M.: Optical fiber long-period grating sensors. Opt. Lett. 21(9), 692–694 (1996)CrossRefGoogle Scholar
  6. 6.
    Dong, X., et al.: Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point. Opt. Commun. 258(2), 159–163 (2006)CrossRefGoogle Scholar
  7. 7.
    Li, T., et al.: Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating. Opt. Commun. 285(24), 4874–4877 (2012)CrossRefGoogle Scholar
  8. 8.
    Shen, C., et al.: Polarization-dependent curvature sensor based on an in-fiber Mach–Zehnder interferometer with a difference arithmetic demodulation method. Opt. Express 20.14, 15406–15417 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhou, W., et al.: Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer. Photonics J. IEEE 4.3, 1051–1057 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., et al.: Intensity measurement bend sensors based on periodically tapered soft glass fibers. Opt. Lett. 36.4, 558–560 (2011)CrossRefGoogle Scholar
  11. 11.
    Arora, A., et al.: Zinc oxide thin film-based MEMS acoustic sensor with tunnel for pressure compensation. Sens. Actuators A Phys. 141.2, 256–261 (2008)CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Wang, C., Liu, L.: Design and analysis of a PZT-based micromachined acoustic sensor with increased sensitivity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52.10, 1840–1850 (2005)CrossRefGoogle Scholar
  13. 13.
    Ni, X., Zhao, Y., Yang, J.: Research of a novel fiber Bragg grating underwater acoustic sensor. Sens. Actuators A Phys. 138.1, 76–80 (2007)CrossRefGoogle Scholar
  14. 14.
    Takahashi, N., Hirose, A., Takahashi, S.: Underwater acoustic sensor with fiber Bragg grating. Opt. Rev. 4(6), 691–694 (1997)CrossRefGoogle Scholar
  15. 15.
    Betz, D.C., et al.: Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Mater. Struct. 12.1, 122 (2003)CrossRefGoogle Scholar
  16. 16.
    Digonnet, M.J., Akkaya, O., Kino, G., et al.: Miniature fiber acoustic sensors and sensor array using photonic-crystal membranes. In: Optical Sensors (p. STu3F-1). Optical Society of America (2012)Google Scholar
  17. 17.
    Ma, J., et al.: Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol. Lett. 10.25, 932–935 (2013)CrossRefGoogle Scholar
  18. 18.
    Zumberge, M.A., et al.: An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz. J. Acoust. Soc. Am. 113.5, 2474–2479 (2003)CrossRefGoogle Scholar
  19. 19.
    Wang, S., et al.: Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil. Sens. J. IEEE 14.7, 2293–2298 (2014)CrossRefGoogle Scholar
  20. 20.
    Ryf, R., Randel, S., Gnauck, A.H., et al.: Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 6 MIMO processing. J. Lightwave Technol. 30(4), 521–531 (2012)CrossRefGoogle Scholar
  21. 21.
    Gong, Y., Zhao, T., Rao, Y. J., et al.: Fiber-optic curvature sensor based on step-index multimode fiber. In: International Conference on Optical Instruments and Technology (OIT2011). (pp. 81990T-81990T) International Society for Optics and Photonics (2011)Google Scholar
  22. 22.
    Chen, J., et al.: Optical fiber curvature sensor based on few mode fiber. Opt. Int. J. Light Electron Opt. 125.17, 4776–4778 (2014)CrossRefGoogle Scholar
  23. 23.
    James, S.W., Tatam, R.P.: Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14(5), R49–R61 (2003)CrossRefGoogle Scholar
  24. 24.
    Han, Y.-G., et al.: Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications. IEEE Photonics Technol. Lett. 13.7, 699–701 (2001)Google Scholar
  25. 25.
    Tanaka, S., et al.: Intensity-based LPG vibration sensor array using FBG and broadband optical source. In: OFS2012 22nd International Conference on Optical Fiber Sensor. International Society for Optics and Photonics (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chao Luo
    • 1
  • Ping Lu
    • 1
  • Xin Fu
    • 1
  • Jing Chen
    • 1
  • Shun Wang
    • 1
  • Chi Zhang
    • 1
  • Deming Liu
    • 1
  • Jiangshan Zhang
    • 2
  1. 1.National Engineering Laboratory for Next Generation Internet Access SystemHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Electronics and Information EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations