Photonic Network Communications

, Volume 33, Issue 1, pp 52–59 | Cite as

Smart home multi-device bidirectional visible light communication

  • Samrat Vikramaditya Tiwari
  • Atul Sewaiwar
  • Yeon-Ho ChungEmail author


Driven by increase in automation, smart homes play an important role in today’s human life. This paper presents a new model for smart home technologies based on multi-device bidirectional visible light communication (VLC). For multiple devices and users, orthogonal code-based wavelength division (color beams) full-duplexed bidirectional VLC link is proposed. The color beams from RGB LEDs are utilized to transmit data and synchronize multi-device transmission. To enhance the performance of the proposed model, receiver diversity is also employed. Performance evaluation reveals that the proposed VLC-based model for smart homes is efficient with superior BER performance in a typical smart home environment except for the far corners. The maximum achievable data rate for each user up to four users is found to be 24 Mbps at both uplink and downlink transmissions.


VLC Smart homes Bidirectional Multi-device  Receiver diversity 



This work was supported by a Research Grant of Pukyong National University (2015).


  1. 1.
    Kim J.E., Boulos G., Yackovich J., Barth T., Beckel C., Mosse D.: Seamless integration of heterogeneous devices and access control in smart homes. In: Proceedings of the International Conference on Intelligent Environment, Guanajuato (2012)Google Scholar
  2. 2.
    Vijayananda W.M.T., Samarakoon K., Ekanayake J.: Development of a demonstration rig for providing primary frequency response through smart meters. In: Proceedings of the International Universities Power Engineering Conference, Cardiff, Wales (2010)Google Scholar
  3. 3.
    Gill, K., Yang, S.H., Yao, F., Liu, Y., Liu, Y.L., Tsang, H.K.: A ZigBee-based home automation system. IEEE Trans. Consum. Electron. 55(2), 422–430 (2009)CrossRefGoogle Scholar
  4. 4.
    Han, J., Choi, C.S., Park, W.K., Lee, I., Kim, S.H.: Smart home energy management system including renewable energy based on ZigBee and PLC. IEEE Trans. Consum. Electron. 60(2), 198–202 (2014)CrossRefGoogle Scholar
  5. 5.
    Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)CrossRefGoogle Scholar
  6. 6.
    Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., Haas, H.: VLC: beyond point-to-point communication. IEEE Commun. Mag. 52(7), 98–105 (2014)CrossRefGoogle Scholar
  7. 7.
    Jovicic, A., Junyi, L., Richardson, T.: Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51(12), 26–32 (2013)CrossRefGoogle Scholar
  8. 8.
    Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Visible light communication based motion detection. Opt. Express 23(14), 18769–18776 (2015)CrossRefGoogle Scholar
  9. 9.
    Pisek E., Rajagopal S., Abu-Surra S.: Gigabit rate mobile connectivity through visible light communication. In: Proceedings of the IEEE International Conference on Communications, Ottawa, pp. 3122–3127 (2012)Google Scholar
  10. 10.
    Cossu, G., Khalid, A.M., Choudhury, P., Corsini, R., Ciaramella, E.: 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 20(26), B501–B506 (2012)CrossRefGoogle Scholar
  11. 11.
    Han, P.P., Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Color clustered multiple-input multiple-output visible light communication. J. Opt. Soc. Korea 19(1), 74–79 (2015)CrossRefGoogle Scholar
  12. 12.
    Rajagopal, S., Roberts, R.D., Lim, S.: IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50(3), 72–82 (2012)CrossRefGoogle Scholar
  13. 13.
    Bandara, K., Chung, Y.H.: Novel color-clustered multiuser visible light communication. Trans. Emerg. Telecommun. Technol. 25(6), 579–590 (2014)CrossRefGoogle Scholar
  14. 14.
    Luna-Rivera, J.M., Perez-Jimenez, R., Rabadan-Borjes, J., Rufo-Torres, J., Guerra, V., Suarez-Rodriguez, C.: Multiuser CSK scheme for indoor visible light communications. Opt. Express 22(20), 24256–24267 (2014)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.F., Yeh, C.H., Chow, C.W., Liu, Y., Liu, Y.L., Tsang, H.K.: Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Opt. Express 20(21), 23024–23091 (2012)Google Scholar
  16. 16.
    Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network. Opt. Commun. 339, 153–156 (2015)CrossRefGoogle Scholar
  17. 17.
    Tiwari S.V., Sewaiwar A., Chung Y.H.: Smart home technologies using visible light communication. In: Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, USA, pp. 404–405 (2015)Google Scholar
  18. 18.
    Henderson, K.W.: Some notes on the walsh functions. IEEE Trans. Electron. Comput. EC–13(1), 50–52 (1964)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tiwari, S.V., Sewaiwar, A., Chung, Y.H.: Optical bidirectional beacon based visible light communications. Opt. Express 23(20), 26551–26564 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Samrat Vikramaditya Tiwari
    • 1
  • Atul Sewaiwar
    • 1
  • Yeon-Ho Chung
    • 1
    Email author
  1. 1.Department of Information and Communications EngineeringPukyong National UniversityBusanKorea

Personalised recommendations