Photonic Network Communications

, Volume 31, Issue 2, pp 259–271 | Cite as

Experimental assessment of a cognitive mechanism to reduce the impact of outdated TEDs in optical networks

  • Ramón J. DuránEmail author
  • Natalia Fernández
  • Domenico Siracusa
  • Antonio Francescon
  • Ignacio de Miguel
  • Ignacio Rodríguez
  • Juan Carlos Aguado
  • Elio Salvadori
  • Rubén M. Lorenzo


We have recently proposed and demonstrated, by means of simulation, the benefits of a simple yet effective cognitive technique to enhance stateless Path Computation Element algorithms with the aim of reducing the connection blocking probability when relying on a potentially non-up-to-date traffic engineering database. In this paper, we employ that technique, called elapsed time matrix (ETM), in the framework of the CHRON (Cognitive Heterogeneous Reconfigurable Optical Network) architecture and, more importantly, validate and analyze its performance in an emulation environment (rather than in a simulation environment) supporting impairment-aware lightpath establishment. Not only dynamic lightpath establishment on demand has been studied, but also restoration processes when facing optical link failures. Emulation results demonstrate that ETM reduces the blocking probability when establishing lightpaths on demand, and increases the percentage of successful restorations in case of optical link failure. Moreover, the use of that technique has little impact on lightpath setup time and lightpath restoration time, respectively.


Cognition Dynamic lightpath establishment Emulator Outdated database traffic engineering database 



This work has been funded by the European Community’s Seventh Framework Programme [FP7/2007-2013] CHRON project (Cognitive Heterogeneous Reconfigurable Optical Network) under grant agreement no 258644,, and Spanish Ministry of Science and Innovation (TEC2010-21178-C02-02 and TEC2014-53071-C3-2-P).


  1. 1.
    Tomkos, I., Angelou, M., Durán, R.J., de Miguel, I., Lorenzo, R.M., Siracusa, D., Salvadori, E, Tymecki, A., Ye, Y.: Next generation flexible and cognitive heterogeneous optical networks.In: Álvarez, F. et al. (ed.) The Future Internet–Future Internet Assembly 2012: From Promises to Reality, pp. 225–236. Springer, Germany (2012)Google Scholar
  2. 2.
    Thomas, R.W., Friend, D.H., DaSilva, L.A., MacKenzie, A.B.: Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun. Mag. 44(12), 51–57 (2006). doi: 10.1109/MCOM.2006.273099 CrossRefGoogle Scholar
  3. 3.
    Mahmoud, Q.H.: Cognitive Networks: Towards Self-aware Networks. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  4. 4.
    de Miguel, I., Durán, R.J., Jiménez, T., Fernández, N., Aguado, J.C., Lorenzo, R.M., Caballero, A., Tafur Monroy, I., Ye, Y., Tymecki, A., Tomkos, I., Angelou, M., Klonidis, D., Francescon, A., Siracusa, D., Salvadori, E.: Cognitive dynamic optical networks [invited]. IEEE/OSA J. Opt. Commun. Netw. 5(10), A107–A118 (2013). doi: 10.1364/JOCN.5.00A107 CrossRefGoogle Scholar
  5. 5.
    Caballero, A., Borkowski, R., de Miguel, I., Durán, R.J., Aguado, J.C., Fernández, N., Jiménez, T., Rodríguez, I., Sánchez, D., Lorenzo, R.M., Klonidis, D., Palkopoulou, E., Diamantopoulos, N., Tomkos, I., Siracusa, D., Francescon, A., Salvadori, E., Ye, Y., López, J., Pittalà, F., Tymecki, A., Tafur, I.: Cognitive, heterogeneous and reconfigurable optical networks: the CHRON project. J. Lightwave Technol. 32, 2308–2323 (2014)CrossRefGoogle Scholar
  6. 6.
    EU FP7 CHRON project: (2015). Accessed 26 Mar 2015
  7. 7.
    Durán, R.J., De Miguel, I., Sánchez, D., Fernández, N., Jiménez, T., Aguado, J.C., Yedugundla, V.K., Angelou, M., Merayo, N., Fernández, P., Atallah, N., Lorenzo, R.M., Francescon, A., Tomkos, I., Abril, E.J.: A Cognitive Decision System For Heterogeneous Reconfigurable Optical Networks. Future Network and Mobile Summit (2012)Google Scholar
  8. 8.
    Farrel, A., Vasseur, J.-P.: A Path Computation Element (PCE)-Based Architecture. IETF RFC 4655. (2006)Google Scholar
  9. 9.
    Paolucci, F., Cugini, F., Giorgetti, A., Sambo, N., Castoldi, P.: A survey on the path computation element (PCE) architecture. IEEE Commun. Surv. Tutor. 15(4), 1819–1841 (2011)CrossRefGoogle Scholar
  10. 10.
    Martínez, R., Casellas, R., Vilalta, R., Muñoz, R.: Experimental assessment of GMPLS/PCE-controlled multi-flow optical transponders in flexgrid networks. In: Proceedings of OFC, paper Tu2B.4 (2015)Google Scholar
  11. 11.
    Liu, L., Casellas, R., Tsuritani, T., Morita, I., Martínez, R., Muñoz, R.:Interworking between openflow and PCE for dynamic wavelength path control in multi-domain WSON. In: Proceedings of OFC/NFOEC, paper OM3G.2 (2012)Google Scholar
  12. 12.
    Yang, H., Zhang, J., Zhao, Y., Ji, Y., Li, H., Lin, Y., Li, G., Han, J., Lee, Y., Ma, T.: Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection. Opt. Express 22(15), 17630–17643 (2014)CrossRefGoogle Scholar
  13. 13.
    Giorgetti, A., Cugini, F., Sambo, N., Paolucci, F., Adriolli, N., Castoldi, P.: Path state-based update of PCE traffic engineering database in wavelength switched optical networks. IEEE Commun. Lett. 14(6), 575–577 (2010)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, I., Durán, R.J., Siracusa, D., de Miguel, I., Francescon, A., Aguado, J.C., Salvadori, E., Lorenzo, R.M.: Minimization of the impact of the TED inaccuracy problem in PCE-based networks by means of cognition. ECOC (2013). doi: 10.1049/cp.2013.1487
  15. 15.
    Fernández, N., Durán, R.J., Siracusa, D., Francescon, A., de Miguel, I., Rodríguez, I., Aguado, J.C., Salvadori, E., Lorenzo, R.M.: Experimental assessment of a cognitive mechanism to reduce the impact of outdated TEDs in optical networks. ICOCN (2014). doi: 10.1109/ICOCN.2014.6987070
  16. 16.
    Lee, Y., Le Roux, J.L., King, D., Oki, D.: Path Computation element communication protocol (PCEP) requirements and protocol extensions in support of global concurrent optimization. IETF RFC 5557 (July 2009)Google Scholar
  17. 17.
    Martínez, R., Castro, A., Casellas, R., Muñoz, R., Velasco, L., Vilalta, R., Comellas, J.: Experimental validation of dynamic restoration in GMPLS-controlled multi-layer networks using PCE-based global concurrent optimization. In: Proceedings of OFC (2013), paper OW4G.3 (2013). doi: 10.1364/OFC.2013.OW4G.3
  18. 18.
    Jiménez, T., Aguado, J.C., de Miguel, I., Durán, R.J., Angelou, M., Merayo, N., Fernández, P., Lorenzo, R.M., Tomkos, I., Abril, E.J.: A cognitive quality of transmission estimator for core optical networks. J. Lightwave Technol. 31(6), 942–951 (2013). doi: 10.1109/JLT.2013.2240257 CrossRefGoogle Scholar
  19. 19.
    Caballero, A., Aguado, J.C., Borkowski, R., Saldaña, S., Jiménez, T., de Miguel, I., Arlunno, V., Durán, R.J., Zibar, D., Jensen, J., Lorenzo, R.M., Abril, E.J., Monroy, I.: Experimental demonstration of a cognitive quality of transmission estimator for optical communication systems. Opt. Express 20, B64–B70 (2012)CrossRefGoogle Scholar
  20. 20.
    Zang, H., Jue, H.P. : A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Optical Networks Magazine, pp. 47–60, (2000)Google Scholar
  21. 21.
    Mokhtar, A., Azizoglu, M.: Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. Netw. 6(2), 197 (1998). doi: 10.1109/90.664268 CrossRefGoogle Scholar
  22. 22.
    Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE: extensions to RSVP for LSP tunnels. IETF RFC 3209 (2001)Google Scholar
  23. 23.
    Katz, D., Kompella, K., Yeung, D.: Traffic engineering (TE) extensions to OSPF Version 2. IETF RFC 3630 (2003)Google Scholar
  24. 24.
    GMPLS website: (2015) Accessed 26 Mar 2015
  25. 25.
    GNU Zebra website: (2015). Accessed 26 Mar 2015
  26. 26.
    Aragón, V.M., de Miguel, I., Durán, R.J., Merayo, N., Aguado, J.C., Fernández, P., Lorenzo, R.M., Abril, E.J.: A new algorithm for the distributed RWA problem in WDM networks using ant colony optimization. In: Tomkos, I. et al. (ed.) Optical Network Design and Modeling, pp. 299–308. Springer, Germany (2007)Google Scholar
  27. 27.
    Lu, K., Xiao, G., Chlamtac, I.: Analysis of blocking probability for distributed lightpath establishment in WDM optical networks. IEEE/ACM Trans. on Netw. 13(1), 187–197 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ramón J. Durán
    • 1
    Email author
  • Natalia Fernández
    • 1
  • Domenico Siracusa
    • 2
  • Antonio Francescon
    • 2
  • Ignacio de Miguel
    • 1
  • Ignacio Rodríguez
    • 1
  • Juan Carlos Aguado
    • 1
  • Elio Salvadori
    • 2
  • Rubén M. Lorenzo
    • 1
  1. 1.Universidad de ValladolidValladolidSpain
  2. 2.CREATE-NETTrentoItaly

Personalised recommendations