Advertisement

Photonic Network Communications

, Volume 31, Issue 1, pp 65–70 | Cite as

A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities

  • Farhad MehdizadehEmail author
  • Mohammad Soroosh
Article

Abstract

In this paper, we used the novel defective resonant cavities to design an eight-channel photonic crystal demultiplexer. We showed that by choosing appropriate values for the width of the resonant cavity, the desired wavelengths can be separated. The proposed platform has a square lattice of dielectric rods immersed in air. The value of transmission efficiency for channels was obtained in 94\(-\)99 % range. In addition, the maximum value of crosstalk and average quality factor for channels were calculated –11.2 dB and 2200, respectively.

Keywords

Photonic crystal Demultiplexer Band gap Quality factor Crosstalk 

References

  1. 1.
    Sakoda, S.: Optical Properties of Photonic Crystals. springer, Berlin (2001)CrossRefGoogle Scholar
  2. 2.
    Wu, Z., Xie, K., Yang, H.: Band gap properties of two dimensional photonic crystals with rhombic lattice. Optik 123, 534–536 (2012)CrossRefGoogle Scholar
  3. 3.
    Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik 124, 2639–2644 (2013)CrossRefGoogle Scholar
  4. 4.
    Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik 123, 167–170 (2011)CrossRefGoogle Scholar
  5. 5.
    Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15(7), 075401 (2013)CrossRefGoogle Scholar
  6. 6.
    Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filter based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)CrossRefGoogle Scholar
  7. 7.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124, 5964–5967 (2013)CrossRefGoogle Scholar
  8. 8.
    Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division multiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)CrossRefGoogle Scholar
  9. 9.
    Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal superprism. Opt. Express 42, 17260–17214 (2008)Google Scholar
  10. 10.
    Yusoff, M.H.M., Hassan, H.A., Hashim, M.R., Abd-Rahman, M.K.: Hybrid photonic crystal \(1.31/1.55\mu {\text{ m }}\) wavelength division multiplexer based on coupled line defect channels. Opt. Commun. 284, 1223–1227 (2011)CrossRefGoogle Scholar
  11. 11.
    Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. (2015, in press)Google Scholar
  12. 12.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2*4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. (2015, in press)Google Scholar
  13. 13.
    Ahmadi-Tame, T., Isfahani, B.M., Granpayeh, N., Javan, A.M.: Improving the performance of all optical switching based on nonlinear photonic crystal micro ring resonator. Int. J. Electron. Commun (AEU) 65, 281–287 (2011)CrossRefGoogle Scholar
  14. 14.
    Sharkawy, Ahmed, Shi, Shouyuan, Prather, Dennis W.: Electro-optical switching using coupled photonic crystal waveguides. Opt. Express. 10(20), 1048–1059 (2002)CrossRefGoogle Scholar
  15. 15.
    Danaie, M., Kaatuzian, H.: Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct.-Fundam. Appl. 9, 70–81 (2011)CrossRefGoogle Scholar
  16. 16.
    Rao, W., Song, Y., Liu, M., Jin, C.: All-optical switch based on photonic crystal microcavity with multi-resonant modes. Optik 121, 1934–1936 (2010)CrossRefGoogle Scholar
  17. 17.
    Li, Z.J., Chen, Z.W., Li, B.J.: Optical pulse controlled all optical logic gates in SiGe/Si multimode interference. Opt. Express 13, 1033–1038 (2005)CrossRefGoogle Scholar
  18. 18.
    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND and NOR gates based on nonlinear photonic crystal ring resonators. Optik 125, 5701–5704 (2014)CrossRefGoogle Scholar
  19. 19.
    Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal superprism. Opt. Express 42, 17260–17214 (2008)Google Scholar
  20. 20.
    Momeni, B., Huan, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 42, 2410–2422 (2006)Google Scholar
  21. 21.
    Cheng, S.C., Wang, J.Z., Chen, L.W., Wang, C.C.: Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik 121, 1027–1032 (2011)Google Scholar
  22. 22.
    Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic cavity based WDM multiplexer. Photonic Nanostruct.-Fundam. Appl. 5, 164–176 (2007)CrossRefGoogle Scholar
  23. 23.
    Rostami, A., Nazari, F., Alipour Banaei, H.: A novel proposal for DWDM demultiplexer design using modified T P\(\backslash \)photonic crystal structure. Photonic Nanostruct.-Fundam. Appl. 8, 14–22 (2010)CrossRefGoogle Scholar
  24. 24.
    Rostami, A., Alipour Banei, H., Nazari, F., Bahrami, A.: An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122, 1481–1485 (2011)CrossRefGoogle Scholar
  25. 25.
    Rakhshani, M.R., Birjandi, M.A.M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E 50, 97–101 (2013)CrossRefGoogle Scholar
  26. 26.
    Bouamami, S., Naoum, R.: Compact WDM demultiplexer for seven channels in photonic crystal. Optik 124, 2373–2375 (2013)CrossRefGoogle Scholar
  27. 27.
    Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quant. Electron. 45, 1063–1075 (2013)CrossRefGoogle Scholar
  28. 28.
    Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)CrossRefGoogle Scholar
  29. 29.
    Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan and Claypool, Lexington (2006)Google Scholar
  30. 30.
    Qiu, M.: Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)CrossRefGoogle Scholar
  31. 31.
    Bouamami, S., Naoum, R.: New version of seven wavelength demultiplexer based on microcavities in a two-dimensional photonic crystal. Optik 125, 7072–7074 (2014)CrossRefGoogle Scholar
  32. 32.
    Johnson, S.G., Fan, S., Mekis, A., Joannopoulos, J.D.: Multipole-cancellation mechanism for high Q cavities in the absence of a complete photonic band gap. Appl. Phys. Lett. 78, 3388–3391 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Engineering FacultyShahid Chamran University of AhvazAhvazIran

Personalised recommendations