Advertisement

Photonic Network Communications

, Volume 29, Issue 1, pp 106–117 | Cite as

Updating the NCTUns-6.0 tool to simulate parallel optical burst switching of all-optical ultra-dense WDM systems

  • Adnan Ibrahem Salih
  • Abid Abdelouhahab
  • Salama A. Mostafa
  • Mohammed Joudah Zaiter
Article
  • 169 Downloads

Abstract

Optical burst switching (OBS) is proposed as suitable switching architectures for directly transporting traffic over a bufferless wavelength division multiplexing (WDM) networks. Parallel optical burst switching (POBS) is a variant of the OBS model that takes this concept further by transmitting data bursts wavelength and time dimensions. However, there is a lack of simulator that simulates POBS networks. This paper presents an update to the conventional OBS model in the NCTUns-6.0 simulator (\(\hbox {NCTU}_{\mathrm{ns}\text {-}\mathrm{POBS}}\)). The \(\hbox {NCTU}_{\mathrm{ns}\text {-}\mathrm{POBS}}\) tool is capable of simulating POBS networks for ultra-dense WDM. It analyzes the features of POBS networks, enables to adjust the parameters of POBS networks and enhances their switching technology. To test and validate the performance of the tool, the proposed random wavelength assignment technique (RWAT) is compared with the existing sequential wavelength assignment technique (SWAT) of the POBS model and the conventional OBS model. The results of the simulation show that, the \(\hbox {NCTU}_{\mathrm{ns}\text {-}\mathrm{POBS}}\) successfully simulates the POBS networks in which the proposed RWAT enables the POBS to yield higher throughput compared to the existing SWAT and the OBS conventional technique.

Keywords

Optical burst switching (OBS) networks Parallel optical burst switching (POBS) networks Ultra-dense wavelength division multiplexing (ultra-dense WDM) NCTUns-6.0 simulator 

References

  1. 1.
    Berman, F., Fox, G., Hey, A.J.: Grid Computing: Making the Global Infrastructure a Reality, vol. 2. Wiley, London (2003)Google Scholar
  2. 2.
    Hirosaki, B., Emura, K., Hayano, S.-I., Tsutsumi, H.: Next-generation optical networks as a value creation platform. IEEE Commun. Mag. 41, 65–71 (2003)CrossRefGoogle Scholar
  3. 3.
    Tucker, R.S., Parthiban, R., Baliga, J., Hinton, K., Ayre, R.W., Sorin, W.V.: Evolution of WDM optical IP networks: a cost and energy perspective. J. Lightwave Technol. 27, 243–252 (2009)Google Scholar
  4. 4.
    Soares, V.N., Veiga, I.D., Rodrigues, J.J.: OBS simulation tools: a comparative study. In: Communications Workshops, 2008. ICC Workshops’ 08. IEEE International Conference on 2008, pp. 256–260 (2008)Google Scholar
  5. 5.
    Pattavina, A.: Multi-wavelength switching in IP optical nodes adopting different buffering strategies. Opt. Switch. Netw. 1, 65–75 (2005)CrossRefGoogle Scholar
  6. 6.
    Qiao, C., Yoo, M.: Choices, features and issues in optical burst switching. Opt. Netw. Mag. 1, 36–44 (2000)Google Scholar
  7. 7.
    Vokkarane, V.M.: Design and Analysis of Architectures and Protocols for Optical Burst-Switched Networks. Citeseer (2004)Google Scholar
  8. 8.
    Lazzez, A.: Optical burst-switched networks: design, modeling and performances analysis. Ph. D. Thesis, University of 7th of November at Carthage, Tunisia (2008)Google Scholar
  9. 9.
    Abdelouahab, A., Abbou, F., Ewe, H.: Parallel optical burst switching (POBS) for ultra-dense WDM (U-DWDM) systems. In: Information Technology and Multimedia (ICIM), 2011 International Conference on, pp. 1–6 (2011)Google Scholar
  10. 10.
    Cai, J.-X., Nissov, M., Davidson, C.R., Pilipetskii, A.N., Mohs, G., Li, H., Cai, Y., Golovchenko, E.A., Lucero, A.J., Foursa, D.G.: Long-haul 40 Gb/s DWDM transmission with aggregate capacities exceeding 1 Tb/s. J. Lightwave Technol. 20, 2247–2258 (2002)Google Scholar
  11. 11.
    Zhu, B., Nelson, L., Stulz, S., Gnauck, A., Doerr, C., Leuthold, J., Gruner-Nielsen, L., Pedersen, M., Kim, J., Lingle Jr, R.: High spectral density long-haul 40-Gb/s transmission using CSRZ-DPSK format. J. Lightwave Technol. 22, 208–214 (2004)Google Scholar
  12. 12.
    Chbat, M.W., Penninckx, D.: High-spectral-efficiency transmission systems. In: Optical Fiber Conference (OFC2000), pp. 134–136 (2000)Google Scholar
  13. 13.
    Xu, J., Qiao, C., Li, J., Xu, G.: Efficient channel scheduling algorithms in optical burst switched networks. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, pp. 2268–2278 (2003)Google Scholar
  14. 14.
    Dolzer, K., Gauger, C., Späth, J., Stefan, B.: Evaluation of reservation mechanisms for optical burst switching. AEU-Int. J. Electron. Commun. 55, 18–26 (2001)CrossRefGoogle Scholar
  15. 15.
    Baldine, I., Cassada, M., Bragg, A., Karmous-Edwards, G., Stevenson, D.: Just-in-time optical burst switching implementation in the ATDnet all-optical networking testbed. In: Global Telecommunications Conference, 2003. GLOBECOM’03. IEEE, pp. 2777–2781 (2003)Google Scholar
  16. 16.
    Turner, J.S.: Terabit burst switching. J. High Speed Netw. 8, 3–16 (1999)Google Scholar
  17. 17.
    Yoo, M., Qiao, C., Dixit, S.: QoS performance of optical burst switching in IP-over-WDM networks. IEEE J. Sel. Areas Commun. 18, 2062–2071 (2000)CrossRefGoogle Scholar
  18. 18.
    Hsu, C.-F., Liu, T.-L., Huang, N.-F.: Performance analysis of deflection routing in optical burst-switched networks. In: INFOCOM 2002 Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, pp. 66–73 (2002)Google Scholar
  19. 19.
    Vokkarane, V.M., Haridoss, K., Jue, J.P.: Threshold-based burst assembly policies for QoS support in optical burst-switched networks. In: ITCom The Convergence of Information Technologies and Communications, 2002, pp. 125–136 (2002)Google Scholar
  20. 20.
    DeCusatis, C.: Dense wavelength division multiplexing for parallel sysplex and metropolitan/storage area networks. Opt. Netw. 2, 69–80 (2001)Google Scholar
  21. 21.
    Sano, A., Masuda, H., Kobayashi, T., Fujiwara, M., Horikoshi, K., Yoshida, E., Miyamoto, Y., Matsui, M., Mizoguchi, M., Yamazaki, H.: 69.1-Tb/s (432 \(\times \) 171-Gb/s) C-and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Optical Fiber Communication Conference, 2010, p. PDPB7Google Scholar
  22. 22.
    Tarara, H., Yamawaku, J., Ohara, T., Yamazaki, E., Masuda, H., Yamamoto, T., Suzuki, K., Takada, A., Morioka, T.: 3-2 1000 channel WDM transmission and grouped wavelength path routing experiments using JGNII test bed (2005)Google Scholar
  23. 23.
    Amstutz, S.R.: Burst switching-an update. IEEE Commun. Mag. 27, 50–57 (1989)CrossRefGoogle Scholar
  24. 24.
    Parthiban, R., Leckie, C., Zalesky, A., Tucker, R.S.: Waveband burst switching-a new approach to networking. In: National Fiber Optic Engineers Conference, p. JThB47 (2006)Google Scholar
  25. 25.
    Huang, Y., Heritage, J.P., Mukherjee, B.: A new node architecture employing waveband-selective switching for optical burst-switched networks. IEEE Commun. Lett. 11, 756–758 (2007)Google Scholar
  26. 26.
    Wang, S.-Y., Chou, C.-L., Lin, C.-C., Huang, C.: The GUI User Manual for the NCTUns 6.0 Network Simulator and Emulator. National Chiao Tung University, Tajwan (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Adnan Ibrahem Salih
    • 1
  • Abid Abdelouhahab
    • 2
  • Salama A. Mostafa
    • 3
  • Mohammed Joudah Zaiter
    • 3
  1. 1.College of ScienceKirkuk UniversityKirkukIraq
  2. 2.Researches and Development DepartmentIslamic University of MadinahMedinaSaudi Arabia
  3. 3.College of Graduate StudiesUniversiti Tenaga NasionalKajangMalaysia

Personalised recommendations