Photonic Network Communications

, Volume 28, Issue 3, pp 264–275 | Cite as

Analytical model of quality of service scheduling for optical aggregation in data centers



Optical switching technologies represent a promising solution for data center interconnection networks to support the increasing bandwidth requirements of current cloud-based applications, while reducing interconnection complexity and energy consumption. Furthermore, the heterogeneity of intra- and inter-data center traffic characteristics requires some form of quality of service management. This paper describes modeling and design aspects of data center optical interconnections with particular emphasis on the aggregation level, where hybrid switching and packet scheduling are jointly applied to effectively implement service differentiation. Priority scheduling of three different service profiles is applied to maximize intra- and inter-data center traffic throughput, while guaranteeing time transparency for delay-sensitive services and zero loss/fixed delay for guaranteed connections. An analytical model is defined and validated to assess loss of real time and throughput of best effort traffic, in asynchronous packet context, when considering best effort traffic saturating the channels of the optical link. The model can also be used to dimension the optical output interface of the aggregation level switch.


Data center Optical networks Quality of service  Analytical model Simulation 



This work was partially funded by the Italian Ministry of Education, University and Research (MIUR) within the framework of PRIN 2009, project “Software router to Improve Next-Generation Internet” (SFINGI). The authors wish to thank Prof. Giorgio Corazza and Prof. Norvald Stold for stimulating the discussion on the topic.


  1. 1.
    Bitar, N., Gringeri, S., Xia, T.J.: Technologies and protocols for data center and cloud networking. IEEE Commun. Mag. 51(9), 24–31 (2013)CrossRefGoogle Scholar
  2. 2.
    Contreras, L.M., Lopez, V., De Dios, O.G., Tovar, A., Munoz, F., Azanon, A., Fernandez-Palacios, J.P., Folgueira, J.: Towards cloud-ready transport networks. IEEE Commun. Mag. 50(9), 48–55 (2012)CrossRefGoogle Scholar
  3. 3.
    Chen, M., Jin, H., Wen, Y., Leung, V.C.M.: Enabling technologies for future data center networking: a primer. IEEE Netw. 27(4), 8–15 (2013)CrossRefGoogle Scholar
  4. 4.
    Gringeri, S., et al.: Extending software defined network principles to include optical transport. IEEE Commun. Mag. 51(3), 32–40 (2013)CrossRefGoogle Scholar
  5. 5.
    Channegowda, M., Nejabati, R., Simeonidou, D.: Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations. IEEE/OSA J. Opt. Commun. Netw. 5(10), A274–A282 (2013)CrossRefGoogle Scholar
  6. 6.
    Peng, S., Nejabati, R., Simeonidou, D.: Role of optical network virtualization in cloud computing. IEEE/OSA J. Opt. Commun. Netw. 5(10), A162–A170 (2013)CrossRefGoogle Scholar
  7. 7.
    Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: dynamic flow scheduling for data center networks. In: Proceedings of 7th USENIX Conference on Networked Systems Design and Implementation (NSDI), San Jose, CA (2010)Google Scholar
  8. 8.
    Liu, R., Gu, H., Yu, X., Nian, X.: Distributed flow scheduling in energy-aware data center networks. IEEE Commun. Lett. 17(4), 801–804 (2013)CrossRefMATHGoogle Scholar
  9. 9.
    Alizadeh, M., Yang, S., Katti, S., McKeown, N. Prabhakar, B., Shenker, S.: Deconstructing datacenter packet transport. In: Proceedings of 11th ACM Workshop on Hot Topics in Networks (HotNets), Seattle, WA (2012)Google Scholar
  10. 10.
    Kachris, C., Kanonakis, K., Tomkos, I.: Optical interconnection networks in data centers: recent trends and future challenges. IEEE Commun. Mag. 51(9), 39–45 (2013)CrossRefGoogle Scholar
  11. 11.
    Wang, G., et al.: c-Through: part-time optics in data centers. ACM SIGCOMM Comput. Commun. Rev. 40(4), 327–338 (2010)CrossRefGoogle Scholar
  12. 12.
    Farrington, N., et al.: Helios: a hybrid electronic/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010)CrossRefGoogle Scholar
  13. 13.
    Perello, J., et al.: All-optical packet/circuit switching-based data center network for enhanced scalability, latency, and throughput. IEEE Netw. 27(6), 14–22 (2013)CrossRefGoogle Scholar
  14. 14.
    Gauger, C.M., Kühn, P.J., Van Breusegem, E., Pickavet, M., Demeester, P.: Hybrid optical network architectures: bringing packets and circuits together. IEEE Commun. Mag. 44(8), 36–42 (2006)CrossRefGoogle Scholar
  15. 15.
    Jukan, A., Veeraraghavan, M., Hasan, M.Z.: Hybrid networking: evolution toward combined IP and dynamic circuit services, Guest Editorial. IEEE Commun. Mag. 49(5), 112 (2011)CrossRefGoogle Scholar
  16. 16.
    Bjornstad, S., Hjelme, D.R., Stol, N.: A packet switched hybrid optical network with service guarantees. IEEE J. Sel. Areas Commun. 24(8), 97–107 (2006)CrossRefGoogle Scholar
  17. 17.
    Stol, N., Raffaelli, C., Savi, M., Cincotti, G.: Optical codes for packet detection in the OpMiGua switch architecture. In: Proceedings of 2010 Photonics in Switching (PS) Conference, Monterey, California (2010)Google Scholar
  18. 18.
    Stol, N., Raffaelli, C., Savi, M.: 3-Level integrated hybrid optical network (3LIHON) to meet future QoS requirements. In: Proceedings of IEEE Globecom 2011, Houston, TX, USA (2011)Google Scholar
  19. 19.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)CrossRefGoogle Scholar
  20. 20.
    Corazza, G., Cerroni, W., Leli, G., Raffaelli, C., Savi, M., Stol, N.: Analytical Model of 3-level QoS Scheduling in Hybrid Optical Networks. In: Proceedings of ICNC 2013, San Diego, CA (2013)Google Scholar
  21. 21.
    Leli, G., Raffaelli, C., Savi, M., Stol, N.: Performance assessment of congestion resolution scheduling in asynchronous 3-level integrated hybrid optical network (A-3LIHON). In: Proceedings of networks 2012, Rome (2012)Google Scholar
  22. 22.
    Veisllari, R., Stol, N., Bjornstadt, S., Raffaelli, C.: Scalability analysis of SDN-controlled optical ring MAN with hybrid traffic. In: Proceedings of IEEE ICC 2014, Sydney, Australia (2014)Google Scholar
  23. 23.
    Kleinrock, L.: Queuing Systems, Volume 1: Theory. Wiley, New York (1975)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.DEI, University of BolognaBolognaItaly

Personalised recommendations