Photonic Network Communications

, Volume 28, Issue 3, pp 218–224 | Cite as

Efficient time gating in ultrafast optical TDM networks

  • Arash YazdaniEmail author
  • David Rincón
  • Sebastià Sallent


Ultrafast optical communication is the backbone of high-speed global networking infrastructure. Optical time division multiplexing (OTDM) is a popular technique for embedding data from many simultaneous users on a single optical channel. This paper studies the optimal clock signal used in optical time gating to extract the data of the desired user in an OTDM network. We show that the pulse width of the clock signal can be optimized to achieve a minimum bit error rate (BER) in these networks. In this paper, we assume that the optical clock signal used for time gating has jitter, and there is therefore a delay variation between the clock and data signals. We model this delay as a zero mean Gaussian random variable. Using this model, an analytical BER expression is derived for systems with Gaussian pulses. In the numerical results, we find the optimal values of the clock pulse width by evaluating the BER versus the pulse width for different variances of the delay. Simulation results are also presented to evaluate the accuracy of the analytical expression.


Optical time division multiplexing (OTDM) Time gating Optical AND gate Phase error Bit error rate 



This work is partially supported by the Spanish Government through Project TEC2010-20527-C02-01(HOWARDS).


  1. 1.
    Hamilton, S.A., Robinson, B.S., Murphy, T.E., Savage, S.J., Ippen, E.P.: 100 Gb/s optical time-division multiplexed networks. J. Lightw. Technol. 20(12), 2086–2100 (2002)Google Scholar
  2. 2.
    Kang, I., Yan, M.: Simple setup for simultaneous optical clock recovery and ultra-short sampling pulse generation. Electron. Lett. 38(20), 1199–1201 (2002)CrossRefGoogle Scholar
  3. 3.
    Roncin, V., Lobo, S., Ngo, M., Bramerie, L., O’Hare, A., Joindot, M., Simon, J.-C.: Patterning effects in all-optical clock recovery: novel analysis using a clock remodulation technique. IEEE J. Sel. Top. Quantum Electron. 16(5), 1495–1502 (2010)Google Scholar
  4. 4.
    Agis, F.G., Ware, C., Erasme, D., Ricken, R., Quiring, V., Sohler, W.: 10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in periodically poled lithium niobate. IEEE Photon. Technol. Lett. 18(13), 1460–1462 (2006)CrossRefGoogle Scholar
  5. 5.
    Kouloumentas, C., Tzanakaki, A., Tomkos, I.: Clock recovery at 160 Gb/s and beyond, using a fiber-based optical power limiter. IEEE Photon. Technol. Lett. 18(22), 2365–2367 (2006)CrossRefGoogle Scholar
  6. 6.
    Salem, R., Ahmadi, A.A., Tudury, G.E., Carter, G.M., Murphy, T.E.: Two-photon absorption for optical clock recovery in OTDM networks. J. Lightw. Technol. 24(9), 3353–3362 (2006)CrossRefGoogle Scholar
  7. 7.
    Noshad, M., Noshad, M., Alavirad, S.M., Sallent, S.: Performance analysis of AND gates based on four-wave-mixing for application in optical-code division multiple access systems. IET Optoelectron. J. 6(1), 13–25 (2012)CrossRefGoogle Scholar
  8. 8.
    Gorwn, I.P., Haus, H.A.: Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986)CrossRefGoogle Scholar
  9. 9.
    Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)Google Scholar
  10. 10.
    Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, New York (2010)Google Scholar
  11. 11.
    Vizzino, A., Gioannini, M., Montrosset, I.: Dynamic simulation of clock recovery with self-pulsating three-section distributed-feedback lasers. IEEE J. Quantum Electron. 38(12), 1580–1586 (2002)CrossRefGoogle Scholar
  12. 12.
    Proakis, J., Salehi, M.: Digital Communications, 5th edn. McGraw-Hill, New York (2007)Google Scholar
  13. 13.
    Chan, C.C.K.: Optical Performance Monitoring: Advanced Techniques for Next-Generation Photonic Networks. Academic Press, New York (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Arash Yazdani
    • 1
    Email author
  • David Rincón
    • 1
  • Sebastià Sallent
    • 1
  1. 1.Escola d’Enginyeria de Telecomunicació i Aeroespacial de Castelldefels (EETAC)Universitat Politécnica de catalunya (UPC) - BarcelonatechCastelldefelsSpain

Personalised recommendations