Advertisement

Photonic Network Communications

, Volume 26, Issue 2–3, pp 131–139 | Cite as

Dynamic source aggregation of subwavelength connections in elastic optical networks

  • Pouria Sayyad KhodashenasEmail author
  • Jaume Comellas
  • Salvatore Spadaro
  • Jordi Perelló
Article

Abstract

Elastic optical network technologies arise as promising solutions for future high-speed optical transmission, since they can provide superior flexibility and scalability in spectrum allocation toward the seamless support of diverse services along with the rapid growth of Internet traffic. In elastic optical networks, heterogeneous traffic demands are typically supported by a single type of bandwidth-variable transmitters, which is not always spectrum and cost-efficient. In light of this, the aggregation of same source but different destination subwavelength connections has been recently introduced for elastic optical networks, aiming to obtain both transmitter and spectrum usage savings. In this paper, we propose a novel algorithm for dynamic source aggregation of connections. Moreover, we introduce a novel node architecture enabling the realization of the proposed source aggregation in a cost-effective way. The obtained results demonstrate considerable improvement in the network spectrum utilization, as well as a significant reduction in the number of necessary transmitters per node.

Keywords

Elastic optical network Source aggregation Network optimization 

Notes

Acknowledgments

This work has been supported by the Government of Catalonia and the European Social Fund through a FI-AGAUR research scholarship grant and by the Spanish National project ELASTIC (TEC2011-27310).

References

  1. 1.
    Cisco White Paper: Cisco visual networking index: forecast and methodology (2011–2016)Google Scholar
  2. 2.
    Rouzic, E.L., et al.: Future optical core networks for novel applications. In: Proc. ECOC, Tu.6.K.1 (2011)Google Scholar
  3. 3.
    Jinno, M., et al.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jinno, M., et al.: Dynamic optical mesh networks: drivers, challenges and solutions for the future. In: Proc. ECOC (2009)Google Scholar
  5. 5.
    Shieh, W., Yi, X., et al.: Coherent optical OFDM: has its time come? J. Opt. Netw. 7(3), 234–255 (2008)CrossRefGoogle Scholar
  6. 6.
    Gerstel, O.: Flexible use of spectrum and photonic grooming. In: Proc. IPR/PS, PMD3 (2010)Google Scholar
  7. 7.
    Jinno, M., et al.: IP traffic offloading to elastic optical layer using multi-flow optical transponder. In: Proc. ECOC, Mo.2.K.2 (2011)Google Scholar
  8. 8.
    Gerstel, O., et al.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), s12–s20 (2012)CrossRefGoogle Scholar
  9. 9.
    Kozicki, B., et al.: Optical path aggregation for 1-Tb/s transmission in spectrum-sliced elastic optical path network. IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010)CrossRefGoogle Scholar
  10. 10.
    Takara, H., et al.: Experimental demonstration of 400 Gb/s multi-flow, multi-rate, multi-reach optical transmitter for efficient elastic spectral routing. In: Proc. ECOC, Tu.5.A.4 (2011)Google Scholar
  11. 11.
    Geisler, D.J., et al.: Bandwidth scalable, coherent transmitter based on parallel synthesis of multiple spectral slices. In: Proc. OFC/NFOEC, OTuE3 (2011)Google Scholar
  12. 12.
    Dischler, R., et al.: Demonstration of bit rate variable ROADM functionality on an optical OFDM super-channel. In: Proc. OFC/NFOEC, OTuM7 (2010)Google Scholar
  13. 13.
    Ma, Y., et al.: 1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and sub-wavelength bandwidth access. J. Lightw. Technol. 28(4), 308–315 (2010)CrossRefGoogle Scholar
  14. 14.
    Shieh, W.: OFDM for flexible high-speed optical networks. J. Lightw. Technol. 29(10), 1560–1577 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, Q., Chen, L.: Performance analysis of multicast traffic over spectrum elastic optical networks. In: Proc. OFC/NFOEC, OTh3B.7 (2012)Google Scholar
  16. 16.
    Zhang, G., Leenheer, M.D., Mukherjee, B.: Optical grooming in OFDM-based elastic optical networks. In: Proc. OFC/NFOEC, OTh1A (2012)Google Scholar
  17. 17.
    Zhang, G., De Leenheer, M., Mukherjee, B.: Optical traffic grooming in OFDM-based elastic optical networks. J. Opt. Commun. Netw. 4(11), B17–B25 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, S., et al.: Dynamic traffic grooming in elastic optical networks. J. Sel. Areas Commun. 31(1), 4–12 (2013)CrossRefGoogle Scholar
  19. 19.
    Kozicki, B., et al.: Filtering characteristics of highly-spectrum efficient spectrum-sliced elastic optical path (SLICE) network. In: Proc. OFC/NFOEC, JWA43 (2009)Google Scholar
  20. 20.
    Agrawal, G., et al.: Nonlinear Fiber Optics, vol. Third Edition. Academic press, London (2001)Google Scholar
  21. 21.
    Ryf, R., et al.: Wavelength blocking filter with flexible data rates and channel spacing. IEEE/OSA J. Lightw. Tehcnol. 23(1), 54–61 (2005)Google Scholar
  22. 22.
    Christodoulopoulos, K., et al.: Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation. In: Proc. IEEE Globecom (2010)Google Scholar
  23. 23.
    Xia, M., et al.: Split spectrum: a multi-channel approach to elastic optical networking. Opt. Express 20(28), 29143–29148 (2012)CrossRefGoogle Scholar
  24. 24.
    Patel, A.N., et al.: Defragmentation of transparent flexible optical WDM (FWDM) networks. In: Proc.OFC/NFOEC, OTuI8 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pouria Sayyad Khodashenas
    • 1
    Email author
  • Jaume Comellas
    • 1
  • Salvatore Spadaro
    • 1
  • Jordi Perelló
    • 1
  1. 1.Advanced Broadband Communications Center (CCABA)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations