Photonic Network Communications

, Volume 26, Issue 2–3, pp 53–64 | Cite as

Column generation algorithm for RSA problems in flexgrid optical networks

  • Marc RuizEmail author
  • Michał Pióro
  • Mateusz Żotkiewicz
  • Mirosław Klinkowski
  • Luis Velasco


Finding optimal routes and spectrum allocation in flexgrid optical networks, known as the RSA problem, is an important design problem in transport communication networks. The problem is \(\mathcal{NP }\)-hard, and its intractability becomes profound when network instances with several tens of nodes and several hundreds of demands are to be solved to optimum. In order to deal with such instances, large-scale optimization methods need to be considered. In this work, we present a column (more precisely, path) generation-based method for the RSA problem. The method is capable of finding reasonable sets of lightpaths, avoiding large sets of precomputed paths, and leading to high-quality solutions. Numerical results illustrating effectiveness of the proposed method for obtaining solutions for large RSA problem instances are presented.


Integer programming Column generation Routing and spectrum allocation Flexgrid optical networks 



The presented work was supported by the FP7 project IDEALIST (Grant agreement no. 317999). The work was also supported by National Science Center (Poland) under Grant 2011/01/B/ST7/02967 (M. Pióro and M. Żotkiewicz) and 2011/01/D/ST7/05884 (M. Klinkowski). M. Żotkiewicz was additionally supported by the EC European Social Fund through the Warsaw University of Technology Development Programme. Also, M. Ruiz and L. Velasco were supported by the Spanish Ministry of Science through the TEC2011-27310 ELASTIC project. The authors wish to thank David Rebolo for his valuable collaboration.


  1. 1.
    Spectral grids for WDM applications: DWDM frequency grid. ITU-T G.694.1 (ed. 2.0) (2012)Google Scholar
  2. 2.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46, 316–329 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Christodoulopoulos, K., Tomkos, I., Varvarigos, E.A.: Elastic bandwidth allocation in flexible OFDM-based optical networks. IEEE J. Lightw. Technol. 29(9), 1354–1366 (2011)CrossRefGoogle Scholar
  4. 4.
    Cugini, F., Meloni, G., Paolucci, F., Sambo, N., Secondini, M., Gerardi, L., Poti, L., Castoldi, P.: Demonstration of flexible optical network based on path computation element. IEEE J. Lightw. Technol. 30(5), 727–733 (2012)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962). doi: 10.1145/367766.368168 CrossRefGoogle Scholar
  7. 7.
    Geisler, D.J., Proietti, R., Yin, Y., Scott, R.P., Cai, X., Fontaine, N.K., Paraschis, L., Gerstel, O., Yoo, S.J.B.: The first testbed demonstration of a flexible bandwidth network with a real-time adaptive control plane. In: Proceedings of the ECOC. Geneva, Switzerland (2011)Google Scholar
  8. 8.
  9. 9.
    Jaumard, B., Meyer, C., Thiongane, B.: On column generation formulations for the RWA problem. Discret. Appl. Math. 157(6), 1291–1308 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)CrossRefGoogle Scholar
  11. 11.
    Klinkowski, M., Ruiz, M., Velasco, L., Careglio, D., Lopez, V., Comellas, J.: Elastic spectrum allocation for time-varying traffic in flexgrid optical networks. IEEE J. Sel. Areas Commun. 31(1), 26–38 (2013)CrossRefGoogle Scholar
  12. 12.
    Klinkowski, M., Walkowiak, K.: Routing and spectrum assignment in spectrum sliced elastic optical path network. IEEE Commun. Lett. 15(8), 884–886 (2011)CrossRefGoogle Scholar
  13. 13.
    Lasdon, L.: Optimization Theory for Large Systems. MacMillan, New York (1970)zbMATHGoogle Scholar
  14. 14.
    Liu, Z., Rouskas, G.N.: A fast path-based ILP formulation for offline RWA in mesh optical networks. In: Proceedings of the IEEE Globecom. Anaheim, California (2012)Google Scholar
  15. 15.
    MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010)Google Scholar
  16. 16.
    Pióro, M.: Mathematical Foundations for Signal Processing, Communications, and Networking, Chap. Network Optimization Techniques. CRC Press, Boca Raton (2012)Google Scholar
  17. 17.
    Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufman, Los Altos (2004)zbMATHGoogle Scholar
  18. 18.
    Ruiz, M., Rebolo, D., Pióro, M., Żotkiewicz, M., Klinkowski, M., Velasco, L.: Detailed description of column generation algorithms for RSA problems in flexgrid optical networks. Technical report, UPC-DAC-RR-2013-15, Barcelona, Spain (2013)Google Scholar
  19. 19.
    Velasco, L., Klinkowski, M., Ruiz, M., Comellas, J.: Modeling the routing and spectrum allocation problem for flexgrid optical networks. Photonic Netw. Commun. 24, 177–186 (2012)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Cao, X., Hu, Q., Pan, Y.: Towards elastic and fine-granular bandwidth allocation in spectrum-sliced optical networks. IEEE J. Opt. Commun. Netw. 4(11), 906–917 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marc Ruiz
    • 1
    Email author
  • Michał Pióro
    • 2
  • Mateusz Żotkiewicz
    • 2
  • Mirosław Klinkowski
    • 3
  • Luis Velasco
    • 1
  1. 1.Computers Architecture DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Institute of TelecommunicationsWarsaw University of TechnologyWarszawaPoland
  3. 3.Department of Transmission and Optical TechnologiesNational Institute of TelecommunicationsWarszawaPoland

Personalised recommendations