Advertisement

Photonic Network Communications

, Volume 26, Issue 1, pp 25–31 | Cite as

LED clipping distortion compensation in optical wireless communication via multiple transmit LEDs

  • Raed MeslehEmail author
Article
  • 310 Downloads

Abstract

A method to reduce signal clipping distortion in indoor optical wireless communication systems based on orthogonal frequency division multiplexing (OFDM) modulation is presented in this paper. Compensating the resulting clipping distortion due to LED operational constrains is achieved through the use of iterative signal clipping (ISC) and multiple light emitting diodes (LED) at the transmitter. ISC technique is based on iterative clipping of the time domain OFDM signal and transmission from a multiple LED transmitter. Transmit LEDs are synchronized, located close to each other, and placed to emit light in the same direction. Hence, the channel path gains from each LED to the receiver photo diode are similar. The received signals from the different LEDs add coherently at the receiver. Reported results demonstrate that the effect of distortion due to clipping is eliminated or significantly reduced based on the considered number of LEDs.

Keywords

Optical wireless communication OFDM Nonlinearity  LEDs VLC Intensity modulation  Direct detection Multiple LEDs 

References

  1. 1.
    Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 4(9), 56–62 (2011)CrossRefGoogle Scholar
  2. 2.
    Tanaka, Y., Komine, T., Haruyama, S., Nakagawa, M.: Indoor visible communication utilizing plural white LEDs as lighting. In: Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 81–85, San Diego, CA, USA, Sep. 30–Oct. 3 (2001)Google Scholar
  3. 3.
    Elgala, H., Mesleh, R., Haas, H.: Indoor Broadcasting via White LEDs and OFDM. IEEE Trans. Consume. Electron. 55(3), 1127–1134 (2009)CrossRefGoogle Scholar
  4. 4.
    Armstrong, J., Lowery, A.: Power efficient optical OFDM. Electron. Lett. 42(6), 370–372 (2006)CrossRefGoogle Scholar
  5. 5.
    Elgala, H., Mesleh, R., Haas, H.: Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs. Inderscie. Int. J. Ultra Wideband Communic. Syst. (IJUWBCS) 1(2), 143–150 (2009)CrossRefGoogle Scholar
  6. 6.
    Elgala, H., Mesleh, R., Haas, H.: An LED model for intensity-modulated optical communication systems. IEEE Photon. Technol. Lett. 22(11), 835–837 (2010)Google Scholar
  7. 7.
    Green, R.J., Joshi, H., Higgins, M.D., Leeson, M.S.: Recent developments in indoor optical wireless. IET Commun. 2(1), 3–10 (2008)CrossRefGoogle Scholar
  8. 8.
    Dimitrov, S., Haas, H.: On the clipping noise in an ACO–OFDM optical wireless communication system. In: IEEE Global Communications Conference (IEEE GLOBECOM 2010), pp. 6–10. Miami, FL, USA (2010)Google Scholar
  9. 9.
    Kang, W., Hranilovic, S.: Power reduction techniques for multiple-subcarrier modulated diffuse wireless optical channels. IEEE Trans. Commun. 56(2), 279–288 (2008)CrossRefGoogle Scholar
  10. 10.
    Mesleh, R., Elgala, H., Haas, H.: On the performance of different OFDM based optical wireless communication systems. IEEE/OSA J. Opt. Commun. Netw. 3(8), 620–628 (2011)CrossRefGoogle Scholar
  11. 11.
    Hara, K.T., Okada, M.: An effective iterative clipping for coded CI/OFDM systems over the nonlinearity of SSPA. In: Proceedings of the 19th International Conference on Personal, Indoor and Mobile Radio Communications (PIMR), 15–18 Sept., Cannes, France (2008)Google Scholar
  12. 12.
    Elgala, H., Mesleh, R., Haas, H.: Modeling for predistortion of LEDs in optical wireless transmission using OFDM. In: Proceedings of the IEEE 10th International Conference on Hybrid Intelligent Systems (HIS), Shenyang, Liaoning, China (2009)Google Scholar
  13. 13.
    Elgala, H., Mesleh, R., Haas, H.: A study of LED nonlinearity effects on optical wireless transmission using OFDM. In: Proceedings of the 6th IEEE International Conference on Wireless and Optical Communications Networks (WOCN), Cairo, Egypt (2009)Google Scholar
  14. 14.
    Kahn, J.M., Barry, J.R.: Wireless infrared communications. Proc. IEEE 85(2), 265–298 (1997)CrossRefGoogle Scholar
  15. 15.
    Barry, J., Kahn, J., Krause, W., Lee, E., Messerschmitt, D.: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993)CrossRefGoogle Scholar
  16. 16.
    Neokosmidis, I., Kamalakis, T., Walewski, J.W., Inan, B., Sphicopoulos, T.: Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach. Lightwave Technol. 27(22), 4970–4978 (2009)CrossRefGoogle Scholar
  17. 17.
    Langer, K.-D., Grubor, J., Bouchet, O., El Tabach, M., Walewski, J., Randel, S., Franke, M., Nerreter, S., O’Brien, D., Faulkner, G., Neokosmidis, I., Ntogari, G., Wolf, M.: Optical wireless communications for broadband access in home area networks. In: Proceeding of the 10th Anniversary International Conference on Transparent Optical Networks (ICTON 08), vol. 4, pp. 149–154, June 22–26, Athens, Greece (2008)Google Scholar
  18. 18.
    Elgala, H., Mesleh, R., Haas, H.: Practical considerations for indoor wireless optical System Implementation using OFDM. In: Proceedings of the IEEE 10th International Conference on Telecommunications (ConTel), Zagreb, Croatia (2009)Google Scholar
  19. 19.
    Bussgang, J.: Cross Correlation Function of Amplitude-Distorted Gaussian Signals. Technical Report 216. Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA (1952)Google Scholar
  20. 20.
    Cho, K., Yoon, D.: On the general BER expression of one- and two-dimensional amplitude modulations. IEEE Trans. Commun. 50(7), 1074–1080 (2002) Google Scholar
  21. 21.
    Grubor, J., Randel, S., Langer, K., Walewski, J.: Bandwidth efficient indoor optical wireless communications with white light emitting diodes. In: Proceedings of the 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, vol. 1, pp. 165–169, Graz, Austria (2008)Google Scholar
  22. 22.
    O’Brien, D., Parry, G., Stavrinou, P.: Optical hotspots speed up wireless communication. Nat. Photonics 1, 245–247 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of TabukTabukSaudi Arabia

Personalised recommendations