Photonic Network Communications

, Volume 25, Issue 1, pp 10–23 | Cite as

Optical switch emulation in programmable software router testbed

  • Ivan Aldaya
  • Raul Cafini
  • Walter Cerroni
  • Carla Raffaelli
  • Michele Savi
Article

Abstract

A programmable optical router is a key enabler for dynamic service provisioning in Future Internet scenarios. It is equipped with optical switching hardware to forward information at hundreds of Gigabits/s rates and above, controlled and managed through modular and flexible procedures according to emerging standards. The possibility to test such costly optical architectures in terms of logical and physical performance, without implementing complex and expensive testbeds, is crucial to speed-up the development process of high-performance routers. To this purpose, this paper introduces the software-based emulation testbed of a programmable optical router, which is here developed and applied to test optical switching fabrics. Accurate characterization of the optical devices and physical layer aspects is implemented with the Click software router environment. Power loss and optical signal-to-noise-ratio evaluation are provided through accurate software representation of the physical characteristics of the optical devices employed. The scalability of the proposed emulation testbed is also assessed on standard PC hardware. All the obtained results prove the effectiveness of the proposed tool to emulate an optical router at different levels of granularity.

Keywords

Optical networks Network programmability Optical switching Optical components Software-defined networking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlgren B., Dannewitz C., Imbrenda C., Kutscher D., Ohkman B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)CrossRefGoogle Scholar
  2. 2.
    The Open Networking Foundation website, https://www.opennetworking.org
  3. 3.
    The Open Networking Foundation, OpenFlow Switch Specification v. 1.3.1, September 2012Google Scholar
  4. 4.
    Zervas G.S., De Leenheer M., Sadeghioon L., Klonidis D., Qin Y., Nejabati R., Simeonidou D., Develder C., Dhoedt B., Demeester P.: Multi-granular optical cross-connect: design, analysis and demonstration. IEEE/OSA J. Opt. Commun. Netw. 1(1), 69–84 (2009)CrossRefGoogle Scholar
  5. 5.
    Contreras L.M., Lopez V., Gonzales De Dios O., Tovar A., Munoz F., Azanon A., Fernandez-Palacios J.P., Folgueira J.: Towards cloud-ready transport networks. IEEE Commun. Mag. 50(9), 48–55 (2012)CrossRefGoogle Scholar
  6. 6.
    Wosinska L., Simeonidou D., Tzanakaki A., Raffaelli C., Politi C.: Optical networks for the future internet: Introduction. IEEE/OSA J. Opt. Commun. Netw. 1(2), FI1–FI3 (2009)CrossRefGoogle Scholar
  7. 7.
    Chertov, R., Havey, D., Almeroth, K.: MSET: A mobility satellite emulation testbed. In: Proceedings of IEEE International Conference on Computer Communications (INFOCOM), San Diego, CA, (March 2010)Google Scholar
  8. 8.
    Chertov, R., Fahmy, S., Shroff, N.B.: A device-independent router model. In: Proceedings of IEEE International Conference on Computer Communications (INFOCOM), Phoenix, AZ, (April 2008)Google Scholar
  9. 9.
    Gerstel O., Jinno M., Lord A., Ben Yoo S.J.: Elastic optical networking: A new dawn for the optical layer?. IEEE Commun. Mag. 50(2), S12–S20 (2012)CrossRefGoogle Scholar
  10. 10.
    Van der Merwe, J., Kalmanek, C.: Network programmability is the answer!. In: Proceedings of Workshop on Programmable Routers for the Extensible Services of Tomorrow (PRESTO), Princeton, NJ, (May 2007)Google Scholar
  11. 11.
    Chen T.M., Jackson A.W.: Active and programmable networks (guest editorial). IEEE Netw. 12(3), 10–11 (1998)CrossRefGoogle Scholar
  12. 12.
    Rooney S., van der Merwe J.E., Crosby S.A., Leslie I.M.: The tempest: A framework for safe, resource assured, programmable networks. IEEE Commun. Mag. 36(10), 42–53 (1998)CrossRefGoogle Scholar
  13. 13.
    Huard J.-F., Lazar A.A.: A programmable transport architecture with QoS guarantees. IEEE Commun. Mag. 36(10), 54–62 (1998)CrossRefGoogle Scholar
  14. 14.
    Tennenhouse D.L., Smith J.M., Sincoskie W.D., Wetherall D.J., Minden G.J.: A survey of active network research. IEEE Commun. Mag. 35(1), 80–86 (1997)CrossRefGoogle Scholar
  15. 15.
    Calvert K.L., Bhattacharjee S., Zegura E., Sterbenz J.: Directions in active networks. IEEE Commun. Mag. 36(10), 72–78 (1998)CrossRefGoogle Scholar
  16. 16.
    Alexander D.S., Arbaugh M.A., Hicks M.W., Kakkar P., Keromytis A.D., Moore J.T., Gunter C.A., Nettles S.M., Smith J.M.: The SwitchWare active network architecture. IEEE Netw. 12(3), 29–36 (1998)CrossRefGoogle Scholar
  17. 17.
    Wetherall D., Legedza D., Guttag J.: Introducing new internet services: Why and how?. IEEE Netw. 12(3), 12–19 (1998)CrossRefGoogle Scholar
  18. 18.
    Workshops on Programmable Routers for the Extensible Services of Tomorrow, PRESTO 2007, Princeton, NJ, May 2007; PRESTO 2008, Seattle, WA, August 2008; PRESTO 2009, Barcelona, Spain, August 2009Google Scholar
  19. 19.
    Yang, L., Dantu, R., Anderson, T., Gopal, R.: Forwarding and Control Element Separation (ForCES) Framework. IETF RFC 3746 (April 2004)Google Scholar
  20. 20.
    Doria, A., Salim, J. Hadi, Haas, R., Khosravi, H., Wang, W., Dong, L., Gopal, R., Halpern, J.: Forwarding and Control Element Separation (ForCES) Protocol Specification. IETF RFC 5810, March 2010Google Scholar
  21. 21.
    Wang W., Dong L., Zhuge B.: Analysis and implementation of an open programmable router based on forwarding and control element separation. J. Comput. Sci. Technol. 23(5), 769–779 (2008)CrossRefMATHGoogle Scholar
  22. 22.
    Haleplidis, E., Haas, R., Denazis, S., Koufopavlou, O.: A web service- and forces-based programmable router architecture. In: Active and Programmable Networks, Lecture Notes in Computer Science, vol. 4388, pp. 108–120, Springer (2009)Google Scholar
  23. 23.
    Enns, R.: Network Configuration Protocol (NETCONF). IETF RFC 6241 (June 2011)Google Scholar
  24. 24.
    Schönwölder, J., Björklund, M., Shafer, P.: Network configuration management using NETCONF and YANG. In: IEEE Communications Magazine, vol. 48, No. 9, (September 2010)Google Scholar
  25. 25.
    Martini B., Martini V., Baroncelli F., Torkman K., Castoldi P.: Application-driven control of network resources in multiservice optical networks. IEEE/OSA J. Opt. Commun. Netw. 1(2), A270–A283 (2009)CrossRefGoogle Scholar
  26. 26.
    Qin, Y., Zervas, G., Martini, V., Ghandour, M., Savi, M., Baroncelli, F., Martini, B., Castoldi, P., Raffaelli, C., Reed, M., Hunter, D., Nejabati, R., Simeonidou, D.: Service-oriented multi-granular optical network testbed. In: Proceedings of Optical Fiber Communication Conference (OFC), San Diego, CA, March (2009)Google Scholar
  27. 27.
    Cerroni, W., Raffaelli, C., Savi, M.: Software emulation of programmable optical routers. In: Proceedings of IEEE Conference on High Performance Switching and Routing (HPSR), Dallas, TX, (June 2010)Google Scholar
  28. 28.
    Cafini, R., Cerroni, W., Raffaelli, C., Savi, M.: Programmable Multi-granular optical router: modular architecture and testing. In: Proceedings of IEEE Global Communications Conference (Globecom), Miami, FL, (Dec 2010)Google Scholar
  29. 29.
    Cafini, R., Cerroni, W., Raffaelli, C., Savi, M. (2011) Security issues in programmable routers for future internet. In: Blefari-Melazzi, N., Bianchi, G., Salgarelli, L. (eds.) Trustworthy Internet. Springer, Italy, pp. 17–30Google Scholar
  30. 30.
    Cafini R., Cerroni W., Raffaelli C., Savi M.: Standard-based approach to programmable hybrid networks. IEEE Commun. Mag. 49(5), 148–155 (2011)CrossRefGoogle Scholar
  31. 31.
    Kitayama, K., Koga, M., Morikawa, H., Hara, S., Kawai, M.: Optical burst switching network test bed in Japan. In: Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, CA, (March 2005)Google Scholar
  32. 32.
    Liboiron-Ladouceur O., Shacham A., Small B.A., Lee B.G., Wang H., Lai C.P., Biberman A., Bergman K.: The data vortex optical packet switched interconnection network. IEEE/OSA J. Lightwave Technol. 26(13), 1777–1789 (2008)CrossRefGoogle Scholar
  33. 33.
    Kohler E., Morris R., Chen B., Jannotti J., Kaashoek M.F.: The click modular router. ACM Trans. Comput. Syst. 18(3), 263–297 (2000)CrossRefGoogle Scholar
  34. 34.
    Somers, J., Barford, P., Crovella, M.: Router Primitives for Programmable Active Measurement. In: Proceedings of Workshop on Programmable Routers for the Extensible Services of Tomorrow (PRESTO), Barcelona, Spain, (Aug. 2009)Google Scholar
  35. 35.
    Zanolin, L., Mascolo, C., Emmerich, W.: Model checking programmable router configurations. In: Graph Transformations and Model-Driven Engineering, Lecture Notes in Computer Science, vol. 5765, pp. 473–491, Springer (2010)Google Scholar
  36. 36.
    Savi, M., Zervas, G., Qin, Y., Martini, V., Raffaelli, C., Baroncelli, F., Martini, B., Castoldi, P., Nejabati, R., Simeonidou, D.: Data-plane architectures for multi-granular OBS network. In: Proceedings of Optical Fiber Communication Conference (OFC), San Diego, CA, (Mar. 2009)Google Scholar
  37. 37.
    Stavdas A., Matrakidis C., Politi C.T.: Migration of broadcast-and-select optical crossconnects from semi-static to dynamic reconfiguration and their physical layer modelling. Opt. Commun. 280(1), 49–57 (2007)CrossRefGoogle Scholar
  38. 38.
    Raffaelli C., Savi M., Stavdas A.: Multistage shared-per-wavelength optical packet switch: Heuristic scheduling algorithm and performance. IEEE/OSA J. Lightwave Technol. 27(5), 538–551 (2009)CrossRefGoogle Scholar
  39. 39.
    Agrawal G.P.: Fiber-Optic Communication Systems. John Wiley and Sons, (2002)Google Scholar
  40. 40.
  41. 41.
    Gaudino, R., Gavilanes Castillo, G.A., Neri, F., Finochietto, J.M.: Simple Optical Fabrics for Scalable Terabit Packet Switches. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 5331–5337, Beijing, China, (May 2008)Google Scholar
  42. 42.
    Wolfson D., Kloch A., Fjelde T., Janz C., Dagens B., Renaud M.: 40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer. IEEE Photonic Technol. Lett. 12(3), 332–334 (2000)CrossRefGoogle Scholar
  43. 43.
    Masanovic M.L., Lal V., Summers J.A., Barton J.S., Skogen E.J., Rau L.G., Coldren L.A., Blumenthal D.J.: Widely tunable monolithically integrated all-optical wavelength converters in InP. IEEE/OSA J. Lightwave Technol. 23(3), 1350–1362 (2005)CrossRefGoogle Scholar
  44. 44.
    Lal V., Masanovic M.L., Summers J.A., Coldren L.A., Blumenthal D.J.: Performance optimization of an InP-based widely tunable all-optical wavelength converter operating at 40 Gb/s. IEEE Photonic Technol. Lett. 18(4), 577–579 (2006)CrossRefGoogle Scholar
  45. 45.
    Apostolopoulos D., Vyrsokinos K., Zakynthinos P., Pleros N., Avramopoulos H.: An SOA-MZI nrz wavelength conversion scheme with enhanced 2R regeneration characteristics. IEEE Photonics Technol. Lett. 21(19), 1363–1367 (2009)CrossRefGoogle Scholar
  46. 46.
    Bhardwaj A., Simsarian J.E., Le Grange J.D., Zhang L., Bernasconi P., Sauer N., Buhl L., Neilson D.T.: Wavelength Conversion Using Semiconductor Optical Amplifiers in Differential Mach-Zehnder Interferometer with Tunable Input Coupler. IEEE Electron. Lett. 45(4), 225–227 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ivan Aldaya
    • 1
  • Raul Cafini
    • 2
  • Walter Cerroni
    • 3
  • Carla Raffaelli
    • 3
  • Michele Savi
    • 4
  1. 1.Center of Electronics and TelecommunicationsMonterrey Institute of Technology and Higher EducationMonterreyMexico
  2. 2.IT Lab, TecnoMarche, S.c.a r.l.Ascoli PicenoItaly
  3. 3.Department of Electrical, Electronic and Information Engineering “G. Marconi”University of BolognaBolognaItaly
  4. 4.Department of TelematicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations