Advertisement

Improved linear crosstalk tolerance in an un-amplified ring PON

  • D. H. RichardsEmail author
  • S. Peiris
  • N. Madamopoulos
  • N. Antoniades
  • X. Jiang
Article
  • 84 Downloads

Abstract

There is increased interest in ring-based passive optical network (PON) architectures due to their local area network (LAN) capability among end users and inherent protection and restoration schemes. The ring architecture includes optical filters and switches with non-ideal channel isolation, leading to the generation of linear crosstalk, which can significantly degrade the system performance if it is not sufficiently suppressed. We use simulation to analyze the effects of linear crosstalk in an un-amplified TDM optical ring and show how we can improve the tolerance of the crosstalk in our architecture that employs optimized tap split ratios as a means of increasing the number of ONUs served. Our approach is based on simulation of the entire network using a combination of wavelength-domain and time-domain techniques. Typically, PON networks use two or three wavelengths that are separated by more than 50 nm to maintain the cost of components low and as such, it is logical that any crosstalk will be negligible. However, the subpar performance of such components motivated our study into the impact of crosstalk. We show that the tap ratio optimization which increases the number ONUs that can be served in the ring can also exacerbate the effects of linear interchannel crosstalk at the ONU’s downstream signal receivers. We also show that surplus power at the last ONU can be utilized to counter this degraded crosstalk performance by careful tap ratio selection, thereby improving the overall tolerance to linear crosstalk in the system.

Keywords

Passive optical network Linear crosstalk Access networks FTTx Fiber-wireless (FiWi) 

References

  1. 1.
    Nesset, D., Appathurai, S., Davey, R., Kelly, T.: Extended reach GPON using high gain semiconductor optical amplifiers. In: Proceedings of the OFC/NFOEC 2008, San Diego, paper JWA107 (2008)Google Scholar
  2. 2.
    Lazaro, J.A., Prat, J., Chanclou, P., Tosi Beleffi, G.M., Teixeira, A., Tomkos, I., Soila, R., Koratzinos, V.: Scalable extended reach PON. In: Proceedings of the OFC/NFOEC 2008, San Diego, paper OThL2 (2008)Google Scholar
  3. 3.
    Yeh C.-H., Sien C.: Self-healing ring-based time-sharing passive optical networks. IEEE Phot. Technol. Lett. 19(15), 1139–1141 (2007)CrossRefGoogle Scholar
  4. 4.
    Sarkar S., Dixit S., Mukherjee B.: Hybrid wireless-optical broadband-access network (WOBAN): a review of relevant challenges. J. Lightw. Techn. 25(11), 3329–3340 (2007)CrossRefGoogle Scholar
  5. 5.
    Luo, Y., Wang, T., Weinstein, S., Cvijetic, M.: Integrating optical and wireless services in the access network. In: Proceedings of the OFC/NFOEC 2006, pp. 1–10 March 2006Google Scholar
  6. 6.
    Shaw W.-T., Wong S.-W., Cheng N., Balasubramanian K., Zhu X., Maier M., Kazovsky L.G.: Hybrid architecture and integrated routing in a scalable optical–wireless access network. IEEE J. Lightwave Technol. 25(11), 3443–3451 (2007)CrossRefGoogle Scholar
  7. 7.
    Sun, X., Chan, C.-K., Wang, Z., Lin, C., Chen, L.-K.: A single-fiber bi-directional WDM self-healing ring network with bi-directional OADM for metro-access applications. IEEE J. Sel. Areas Commun. 25(3), 25(4) April 2007Google Scholar
  8. 8.
    Hossain A.D., Dorsinville R., Ali M., Shami A., Assi C.: Supporting private networking capability in EPON. IEEE Int. Conf. Commun. 2006 6, 2655–2660 (2006)CrossRefGoogle Scholar
  9. 9.
    Lee, B.T., Lee, M.S., Song, H.Y.: Simple ring-type passive optical network with two-fiber protection scheme and performance analysis. Opt. Eng. 46(6), 5002 (2007). doi: 10.1117/1.2746929 Google Scholar
  10. 10.
    Ismail T., Liu C.-P., Mitchell J.E., Seeds A.J.: Transmission of Gb/s DPSK millimeter-wave wireless data over fiber using low-cost uncooled devices with remote 40-GHz local oscillator delivery. J. Lightwave Technol. 26(9), 3490–3496 (2008)CrossRefGoogle Scholar
  11. 11.
    Madamopoulos, N., Antoniades, N., Pathak, B., Ummy, M.A.: PON ring architectures for truly shared LAN capability and dynamic bandwidth allocation for fiber wireless (FiWi) applications. In: Proceedings of the SPIE, vol. 7234, OPTO 2009 San Jose, CA (Jan. 24–29, 2009)Google Scholar
  12. 12.
    Richards, D., Antoniades, N., Jiang, J., Peiris, S., Madamopoulos, N.: Linear Crosstalk Analysis of an Un-Amplified Ring PON Architecture. Sarnoff Symp. Session: Optical Communications and Networking, Princeton, NJ (2010) (April 12–14, 2010)Google Scholar
  13. 13.
    Wang Z., Lin C., Chan C.-K.: Demonstration of a single-fiber self-healing CWDM metro access ring network with unidirectional OADM. Photonics Technol. Lett. IEEE 18(1), 163–165 (2006)CrossRefGoogle Scholar
  14. 14.
    Pathak, B., Ummy, M.A., Madamopoulos, N., Antoniades, N., Ali, M.A., Dorsinville, R.: Experimental demonstration of a distributed ring-based EPON architecture. Photonic Net. Commun. doi: 10.1007/s11107-009-0210-1 (September 2009)
  15. 15.
    Zhou J. et al.: Crosstalk in multiwavelength optical cross connect networks. J. Lightwave Technol. 14, 1423–1435 (1996)CrossRefGoogle Scholar
  16. 16.
    Gyselings T., Morthier G., Baets R.: Crosstalk analysis of multiwavelength optical cross connects. J. Lightwave Technol. 17(8), 1273–1283 (1999)CrossRefGoogle Scholar
  17. 17.
    Shen Y., Lu K., Gu W.: Coherent and incoherent crosstalk in WDM optical networks. J. Lightwave Technology 17(5), 759–764 (1999)CrossRefGoogle Scholar
  18. 18.
    OptSimTM: OptSim product overview, 2011., Web. (17 April 2011) http://rsoftdesign.com/products.php?sub=System+and+Network&itm=OptSim
  19. 19.
    VPItransmissionMakerTM: VPItransmissionMaker optical systems, 2011. Web. (17 April 2011) http://vpiphotonics.com/TMOpticalSystems.php
  20. 20.
    AscenttaTM, Inc.: Products list, 2011. Web. (17 April 2011) http://www.ascentta.com/website/product.html#cou
  21. 21.
    Roudas I. et al.: Wavelength-domain simulation of multiwavelength optical networks. J. Sel. Top. Quantum Electron. 6(2), 348–362 (2000)CrossRefGoogle Scholar
  22. 22.
    Goldstein E.L., Eskildsen L., Elrefaie A.F.: Performance implications of component crosstalk in transparent lightwave networks. Photonics Technol. Lett. IEEE 6(5), 657–660 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. H. Richards
    • 1
    Email author
  • S. Peiris
    • 2
  • N. Madamopoulos
    • 2
  • N. Antoniades
    • 1
  • X. Jiang
    • 1
  1. 1.Department of Engineering Science & PhysicsCollege of Staten IslandStaten IslandUSA
  2. 2.Department of Electrical EngineeringCity College of City University of New YorkNew YorkUSA

Personalised recommendations