Advertisement

Photonic Network Communications

, Volume 21, Issue 2, pp 192–200 | Cite as

Compensating unflattened WDM chips spectra using dynamic backward-pumped fiber Raman amplifiers technology

  • Chih-Ta Yen
  • Chih-Wei Tsai
Article

Abstract

Fiber Raman amplifiers (FRAs) with multiple pumps are proposed to realize dynamic gain equalization for a spectral chips signal with a non-flattened broadband light source (BLS) in a spectrum-sliced wavelength-division multiplexing (WDM) network. In FRAs with multiple pumps, the gain profile can be adjusted via appropriate specification of the relative position of the pump wavelengths and the power of the pump waves. This paper combines a pump-power control algorithm and a genetic algorithm (GA) to establish the optimal pump spectrum for any specified gain spectrum in the WDM system. The method flattens the power spectra of WDM chips by identifying the optimal pump wavelengths and pump power of backward-pumped FRAs. It avoids the conventional requirement for time-consuming trial-and-error adjustments or intensive numerical simulations. Simulation results show that the scheme is simple, effective, and applicable for various BLSs in a spectrum-sliced WDM transmitter.

Keywords

Fiber Raman amplifiers (FRAs) Broadband light source (BLS) Genetic algorithm (GA) Wavelength-division multiplexing (WDM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stern T.E., Bala K.: Multiwavelength Optical Networks: A Layered Approach, Reading. Addison-Wesley, Boston, MA (1999)Google Scholar
  2. 2.
    Keiser G.E.: A review of WDM technology. Opt. Fiber Technol. 5, 3–39 (1999)CrossRefGoogle Scholar
  3. 3.
    Perlin V.E., Winful H.G.: Optimal design of flat-gain wide-band fiber Raman amplifiers. IEEE J. Lightwave Technol. 20(2), 250–254 (2002)CrossRefGoogle Scholar
  4. 4.
    Namiki S., Emori Y.: Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Topics Quantum Electron. 7(1), 3–16 (2001)CrossRefGoogle Scholar
  5. 5.
    Kidorf H., Rottwitt K., Nissov M., Ma M., Rabarijaona E.: Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photon. Technol. Lett. 11(5), 530–532 (1999)CrossRefGoogle Scholar
  6. 6.
    Xiao P., Zeng Q., Huang J., Liu J.: A new optimal algorithm for multipump sources of distributed fiber Raman amplifier. IEEE Photon. Technol. Lett. 15(2), 206–208 (2003)CrossRefGoogle Scholar
  7. 7.
    Cui S., Liu J., Ma X.: A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier. IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004)CrossRefGoogle Scholar
  8. 8.
    Park J., Park J., Kim P., Park N.: Gain and noise figure spectrum control algorithm for fiber Raman amplifiers. IEEE Photon. Technol. Lett. 18(10), 1125–1127 (2006)CrossRefGoogle Scholar
  9. 9.
    Perlin V.E., Winful H.G.: Optimal design of flat-gain wide-band fiber Raman amplifiers. IEEE J. Lightwave Technol. 20(2), 250–254 (2002)CrossRefGoogle Scholar
  10. 10.
    Zhang W., Feng X., Peng J., Liu X.: A simple algorithm for gain spectrum adjustment of backward-pumped distributed fiber Raman amplifiers. IEEE Photon. Technol. Lett. 16(1), 69–71 (2004)CrossRefGoogle Scholar
  11. 11.
    Babich, C.D., Young, J.F.: Performance modeling of a planar waveguide based spectral encoding system. IEEE Lasers and Electro-Optics Society Annual Meeting Proceedings, pp. 523–524.(1999)Google Scholar
  12. 12.
    Hansen P.B., Eskildsen L., Stentz AJ., Strasser T.A., Judkins J., DeMarco J.J., Pedrazzani R., DiGiovanni D.J.: Rayleigh scattering limitations in distributed Raman pre-amplifiers. IEEE Photon. Technol. Lett. 10(1), 159–161 (1998)CrossRefGoogle Scholar
  13. 13.
    Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York (1992)zbMATHGoogle Scholar
  14. 14.
    Liu X., Zhang H., Guo Y.: A novel method for Raman amplifier propagation equations. IEEE Photon. Technol. Lett. 15(3), 392–394 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Varshney, S.K., Saitoh, K., Koshiba, M.: Raman amplification properties of ultralow loss photonic crystal fibers. IQEC/CLEO, pp. 588–589 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Formosa UniversityYunlinTaiwan, ROC

Personalised recommendations