Photonic Network Communications

, Volume 19, Issue 3, pp 257–264

Adaptive polling algorithm to provide subscriber and service differentiation in a Long-Reach EPON

  • Noemí Merayo
  • Tamara Jiménez
  • Ramón J. Durán
  • Patricia Fernández
  • Ignacio de Miguel
  • Rubén M. Lorenzo
  • Evaristo J. Abril
Article

Abstract

A novel interleaved polling algorithm for Long-Reach EPONs is proposed in order to simultaneously provide subscriber and class of service differentiation. It is demonstrated that the new polling algorithm applied to a typical 100 km Long-Reach EPON performs better than centralized methods, where bandwidth prediction is needed to overcome the higher round trip time in which ONUs cannot transmit. As polling methods in Long-Reach EPONs do not require prediction, they are much simpler and show less computational complexity than centralized schemes, avoiding the inaccuracy of bandwidth prediction. Simulation results show that the new algorithm increases the achieved throughput when compared to centralized algorithms with traffic prediction, obtaining a significant reduction of both mean packet delay and packet loss ratio for the highest priority service level profiles.

Keywords

Long-Reach Passive optical network (PON) Dynamic bandwidth allocation (DBA) Service level agreement (SLA) Class of service (CoS) Ethernet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shea D., Mitchell J.E.: Long-Reach optical access technologies. IEEE Netw. 21(5), 5–11 (2007)CrossRefGoogle Scholar
  2. 2.
    Shea, D.P., Ellis, A.D., Payne, D.B., Davey, R.P., Mitchell, J.E.: 10 Gbit/s PON with 100 km reach and x1024 split. In: Proceedings of the European Conference on Optical Communications (ECOC), pp. 850–851, Rimini, Italy (2003)Google Scholar
  3. 3.
    Shea D.P., Mitchell J.E.: A 10-Gbit/s 1024-way-split 100 km long-reach optical-access network. IEEE J. Lightwave Technol. 25(3), 685–693 (2007)CrossRefGoogle Scholar
  4. 4.
    MacHale, E.K., Talli, G., Townsend, P.D.: 10 Gbit/s Bidirectional transmission in a 116 km reach hybrid DWDM-TDM PON. In: Proceedings of 2nd International Conference on Access Technologies, pp. 78–40. Cambridge, UK (2006)Google Scholar
  5. 5.
    Talli, G., Townsend, P.D.: Feasibility demonstration of 100 km reach DWDM SuperPON with upstream bit rates of 2.5 Gb/s and l0 Gb/s. In: Proceedings Optical Fiber Communication Conference OFC 2005, pp. 1–3, Anaheim, USA (2005)Google Scholar
  6. 6.
    Talli G., Townsend P.D.: Hybrid DWDM-TDM long-reach PON for next-generation optical access. IEEE J. Lightwave Technol. 24(7), 2827–2834 (2006)CrossRefGoogle Scholar
  7. 7.
    Pesavento M., Kelsey A.: PONs for the broadband local loop. Lightwave 16(10), 68–74 (1999)Google Scholar
  8. 8.
    Lung B.: PON architecture futureproofs FTTH. Lightwave 16(10), 104–107 (1999)Google Scholar
  9. 9.
    Assi C., Ye Y., Dixit S., Ali M.A.: Dynamic bandwidth allocation for quality-of-service over ethernet PONs. IEEE J. Sel. Areas Commun. 21(9), 1467–1477 (2003)CrossRefGoogle Scholar
  10. 10.
    Ghani N., Shami A., Assi C., Raja M.Y.: Intra-ONU bandwidth scheduling in ethernet passive optical networks. IEEE J. Sel. Areas Commun. 8(11), 683–685 (2004)Google Scholar
  11. 11.
    Sherif S.R., Hadjiantonis A., Ellinas G., Assi C., Ali M.: A novel decentralized Ethernet-Based PON access architecture for provisioning differentiated QoS. J. Lightwave Technol. 22(11), 2483–2497 (2004)CrossRefGoogle Scholar
  12. 12.
    Choi S., Huh J.: Dynamic bandwidth allocation algorithm for multimedia services over Ethernet PONs. ETRI J. 24(6), 465–468 (2002)CrossRefGoogle Scholar
  13. 13.
    Choi S.-I.: Cycling polling-based dynamic bandwidth allocation for differentiated classes of service in ethernet passive optical networks. Photo. Netw. Commun. 7(1), 87–96 (2004)CrossRefGoogle Scholar
  14. 14.
    Chang C.-H., Kourtessis P., Senior J.M.: GPON service level agreement based dynamic bandwidth assignment protocol. Electron. Lett. 42(20), 1173–1174 (2006)CrossRefGoogle Scholar
  15. 15.
    Chang, C.-H., Alvarez, N.M., Kourtessis, P., Senior, J.M.: Dynamic bandwidth assignment for multi-service access in long-reach GPON. In: Proceedings of the European Conference on Optical Communications (ECOC), 3, Germany (2007)Google Scholar
  16. 16.
    Kramer G., Mukherjee B., Pesavento G.: Ethernet PON (ePON): design and analysis of an optical access network. Photo. Netw. Commun. 3(3), 307–319 (2001)CrossRefGoogle Scholar
  17. 17.
    Luo Y., Ansari N.: Bandwidth allocation for multiservice access on EPONs. IEEE Commun. Mag. 43(2), 16–21 (2005)CrossRefGoogle Scholar
  18. 18.
    Byun H.-J., Nho J.-M., Lim J.-T.: Dynamic bandwidth allocation algorithm in ethernet passive optical networks. Electron. Lett. 39(13), 1001–1002 (2003)CrossRefGoogle Scholar
  19. 19.
    Kramer G., Mukherjee B., Pesavento G.: IPACT: a dynamic protocol for an Ethernet PON (EPON). IEEE Commun. Mag. 40(2), 74–80 (2002)CrossRefGoogle Scholar
  20. 20.
    Kramer G., Mukherjee B., Ye Y., Dixit S., Hirth R.: Supporting differentiated classes of service in Ethernet passive optical networks. J. Opt. Network. 1(8), 280–298 (2002)Google Scholar
  21. 21.
    Kramer G., Mukherjee B., Pesavento G.: Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photo. Netw. Commun. 4(1), 89–107 (2002)CrossRefGoogle Scholar
  22. 22.
    Nowak, D., Perry, P., Murphy, J.: A novel service level agreement based algorithm for differentiated services enabled Ethernet PONs. In: Proceedings of the 3rd International Conference on Optical Internet (COIN 2004) 3, pp. 598–599, Japan (2004)Google Scholar
  23. 23.
    Nowak, D., Perry, P., Murphy, J.: Bandwidth allocation for service level agreement aware ethernet passive optical networks. In: Proceedings of the IEEE Global Telecommunications Conference (IEEE GLOBECOM 2004), 3, pp. 1953–1957, Dallas, Texas (2004)Google Scholar
  24. 24.
    Ma, M., Zhu, Y., Cheng, T.-H.: A bandwidth guaranteed polling MAC protocol for ethernet passive optical networks. In: Proceedings of the Twenty Second Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), 1, pp. 22–31, San Francisco (2003)Google Scholar
  25. 25.
    Kim, H., Park, H., Kang, D.-K., Kim, C., Yoo, G.-Y.: Sliding cycle time-based MAC protocol for service level agreeable ethernet passive optical network. In: Proceedings of the IEEE Conference on Communications (ICC 2005), 3, pp. 1848–1852, Seul, Korea (2005)Google Scholar
  26. 26.
    Kramer, G., Mukherjee, B., Maislos, A.: Ethernet passive optical networks. In: Sudhir Dixit (ed.), Multiprotocol over DWDM: Building the Next Generation Optical Internet, pp. 229–275. Wiley (2003)Google Scholar
  27. 27.
    Opnet Modeler Technologies http://www.opnet.com. Accessed 10 May 2008
  28. 28.
    Kramer, G.: How efficient is EPON? White paper analyzing various constituents of EPON transmission overhead, Accessed 20 February 2008 (2002)Google Scholar
  29. 29.
    IEEE 802.3ah Ethernet in the First File Task Force, IEEE 802.3ah Ethernet in the First File Task Force home page. http://www.ieee802.org/3/efm/public/. Accessed 20 June 2007
  30. 30.
    ITU-T Recommendation G.1010, End-user multimedia QoS categories, Telecommunication Standardization Sector of ITU (2001). http://www.itu.int/rec/T-REC-G.1010-200111-I/en. Accessed 15 September 2008
  31. 31.
    ITUT Recommendation G.114, One-way transmission time, in Series G: Transmission Systems and Media, Digital Systems and Networks, Telecommunication Standardization Sector of ITU (2000). http://www.itu.int/rec/T-REC-G.114-200305-I/en. Accessed 15 September 2008
  32. 32.
    NTT, (2006). NTT VDSL service plan. http://www.asist.co.jp/jensspinnet/bflets.html, Accessed 18 December 2008

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Noemí Merayo
    • 1
  • Tamara Jiménez
    • 2
  • Ramón J. Durán
    • 1
  • Patricia Fernández
    • 1
  • Ignacio de Miguel
    • 1
  • Rubén M. Lorenzo
    • 1
  • Evaristo J. Abril
    • 1
  1. 1.Optical Communications Group, Department of Signal Theory, Communications and Telematic Engineering, E.T.S.I. TelecomunicaciónUniversity of Valladolid (Spain)ValladolidSpain
  2. 2.Center for the Development of Telecommunications (CEDETEL), Parque Tecnológico de BoecilloBoecillo, ValladolidSpain

Personalised recommendations