One-to-many multicast restoration based on dynamic core-based selection algorithm in WDM mesh networks

  • I-Shyan Hwang
  • San-Nan Lee
  • Zen-Der Shyu
  • Kang-Peng Chen


This paper proposes a novel dynamic core-based selection (DCS) algorithm for the multicast restoration in WDM mesh networks. The core-based fault tolerance scheme provides a flexible way to control a number of core nodes with less control overheads for searching the routing path, wavelength assignment (RWA), and restoration paths when fault occurs in the one-to-many multicast domain. Compared with the source-based scheme, core-based schemes are easier to maintain, and specifically scalable in large-scale topologies. In the core-based fault tolerance scheme, k-tuple domination nodes are selected to form a minimum sized vertex subset such that each vertex in the graph is dominated by at least k vertices, where the k is defined as two in this paper. The proposed DCS algorithm is defined as each node in multicast tree session must be directly connected to at least one core node in multicast tree session and also has to be directly connected to at least one core node out of multicast tree session. The primary aim of this work is to provide the scalable and fast local survivability based on the information from core nodes. Simulation results show that the proposed algorithm outperforms the Dual Tree and MRLR algorithms in terms of total hop counts needed for all recovery paths and blocking probability for different network topologies.


DCS Multicast restoration Local survivability Dual Tree MRLR 


  1. 1.
    Mukherjee B.: WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18(10), 1810–1824 (2000)CrossRefGoogle Scholar
  2. 2.
    Sahasrabuddhe L.H., Mukherjee B.: Light trees: optical multicasting for improved performance in wavelength routed networks. IEEE Commun. Mag. 37(2), 67–73 (1999)CrossRefGoogle Scholar
  3. 3.
    Hu, W.S., Zeng, Q.J.: Multicasting optical cross connects employing splitter-and-delivery switch. IEEE Photon. Technol. Lett. 10(7), 970–972 (1998). doi: 10.1109/68.681287 CrossRefGoogle Scholar
  4. 4.
    Karaman A., Hassanein H.: Core-selection algorithms in multicast routing—comparative and complexity analysis. Comput. Commun. 29(8), 998–1014 (2006)CrossRefGoogle Scholar
  5. 5.
    Waitzman, D., Partridge, C., Deering, S.: Distance vector multicast routing protocol. IETF RFC 1075 (1988)Google Scholar
  6. 6.
    Adams, A., Nicholas, J., Siadak, W.: Protocol independent multicast-dense mode (PIM-DM): protocol specification (revised). IETF RFC 3973 (2005)Google Scholar
  7. 7.
    Moy, J.: Multicast extensions to OSPF. IETF RFC 1584 (1994)Google Scholar
  8. 8.
    Al-Sharafi, A.M., Othman, M., Sulaiman, M.N., Subramaniam, S.: Modifying the multicast tree in AMTree protocol using random core selection. In: International Conference on Computer and Communication Engineering 2008, Kuala Lumpur, pp. 323–327, 13–15 May 2008Google Scholar
  9. 9.
    Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol independent multicast-sparse mode (PIM-SM): protocol specification (revised), IETF RFC 4601 (2006)Google Scholar
  10. 10.
    Karaman A., Hassanein H.: QoS-constrained core selection for group communication. Comput. Commun. 30(7), 1600–1612 (2007)CrossRefGoogle Scholar
  11. 11.
    Chakrabarti A., Manimaran G.: A case for tree migration and integrated tree maintenance in QoS multicasting. Comput. Commun. 26(9), 1007–1017 (2003)CrossRefGoogle Scholar
  12. 12.
    Fei, A., Cui, J., Gerla, M., Cavendish, D.: A dual-tree scheme for fault-tolerant multicast. In: IEEE International Conference on Communications, Helsinki, Finland, vol. 3, pp. 690–694, June 2001Google Scholar
  13. 13.
    Hwang, I.S., Cheng, R.Y., Tseng, W.D.: A novel dynamic multiple ring-based local restoration for point-to-multipoint multicast traffic in WDM mesh networks. Photon. Netw. Commun. 14(1), 23–33 (2007). doi: 10.1007/s11107-007-0060-7 CrossRefGoogle Scholar
  14. 14.
    Maier, G., Pattavina, A., Patre, S.D., Martinelli, M.: Optical network survivability: protection techniques in the WDM layer. Photon. Netw. Commun. 4(3), 251–269 (2002). doi: 10.1023/A:1016047527226 CrossRefGoogle Scholar
  15. 15.
    Elrefaie A.F.: Multiwavelength survivable ring network architectures. In: IEEE International Conference on Communications, Geneva, vol. 3, pp. 1245–1251, May 23–26 1993Google Scholar
  16. 16.
    Sue, C.C., Shieh, M.S., Huang, C.Y.: Dependable WDM networks with reconfigurable edge-disjoint p-cycles. In: 3rd IEEE International Conference on Information Technology: Research and Education, Washington, DC, USA, pp. 126–130 (2005)Google Scholar
  17. 17.
    Hwang, I.S., Huang, I.F., Chien, C.C.: A novel dynamic fault restoration mechanism using a multiple ring approach in WDM mesh networks. Photon. Netw. Commun. 10(1) 87–105 (2005). doi: 10.1007/s11107-005-1697-8 CrossRefGoogle Scholar
  18. 18.
    Tapolcai, J., Ho, P.H., Verchere, D., Cinkler, T., Haque, A.: A new shared segment protection method for survivable networks with guaranteed recovery time. IEEE Trans. Reliab. 57(2), 272–282 (2008). doi: 10.1109/TR.2008.923480 CrossRefGoogle Scholar
  19. 19.
    Medard M., Finn S.G., Barry R.A., Gallager R.G.: Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Trans. Netw. 7(5), 641–652 (1999)CrossRefGoogle Scholar
  20. 20.
    Boworntummarat, C., Wuttisittikulkij, L., Segkhoonthod, S.: Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multi-fiber systems. In: IEEE International Conference on Communications, Paris, France, vol. 3, pp. 1791–1795, June 2004Google Scholar
  21. 21.
    Guo L., Yu H., Li L.: A new shared-path protection algorithm under shared-risk link group constraints for survivable WDM mesh networks. Opt. Commun. 246(4–6), 285–295 (2005)CrossRefGoogle Scholar
  22. 22.
    Xu D., Xiong Y., Qiao C.: Novel algorithms for shared segment protection. IEEE J. Sel. Areas Commun. 21(8), 1320–1331 (2003)CrossRefGoogle Scholar
  23. 23.
    Luhua L., Lemin L., Sheng W.: Multicast protection scheme in survivable WDM optical networks. J. Netw. Comput. Appl. 31(3), 303–316 (2006)Google Scholar
  24. 24.
    Miranda L., Roden P., Slater J.: Liar’s domination in graphs. Discrete Math. in press (Corrected proof, available online 19 August 2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • I-Shyan Hwang
    • 1
  • San-Nan Lee
    • 2
  • Zen-Der Shyu
    • 1
    • 3
  • Kang-Peng Chen
    • 1
  1. 1.Department of Computer Science and EngineeringYuan-Ze UniversityChung-LiTaiwan
  2. 2.Department of Computer Science and Information EngineeringVanung UniversityChung-LiTaiwan
  3. 3.Department of General StudiesArmy AcademyChung-LiTaiwan

Personalised recommendations