Photonic Network Communications

, Volume 18, Issue 2, pp 191–210 | Cite as

An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer

  • A. TeixeiraEmail author
  • L. Costa
  • G. Franzl
  • S. Azodolmolky
  • I. Tomkos
  • K. Vlachos
  • S. Zsigmond
  • T. Cinkler
  • G. Tosi-Beleffi
  • P. Gravey
  • T. Loukina
  • J. A. Lázaro
  • C. Vazquez
  • J. Montalvo
  • E. Le Rouzic


A vertical perspective, ranging from management and routing to physical layer options, concerning dynamic network monitoring and compensation of impairments (M&C), is given. Feasibility, reliability, and performance improvements on reconfigurable transparent networks are expected to arise from the consolidated assessment of network management and control specifications, as a more accurate evaluation of available M&C techniques. In the network layer, physical parameters aware algorithms are foreseen to pursue reliable network performance. In the physical layer, some new M&C methods were developed and rating of the state-of-the-art reported in literature is given. Optical monitoring implementation and viability is discussed.


Dynamic networks Optical performance monitoring Impairment compensation Network management and routing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, L.K., Cheung, M.H., Chan, C.K.: From optical performance monitoring to optical network management: research progress and challenges (Invited). In: Proceedings of ICOCN (2004)Google Scholar
  2. 2.
    Saleh M., Simmons J.M.: Evolution toward the next-generation core optical network. IEEE/OSA. J. Lightwave Technol. 24(9), 3303–3321 (2006). doi: 10.1109/JLT.2006.880608 CrossRefGoogle Scholar
  3. 3.
    Zang H., Jue J.P., Mukherjee B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. SPIE/Baltzer Opt. Netw. Mag. 1(1), 47–60 (2000)Google Scholar
  4. 4.
    Banerjee D., Mukherjee B.: Wavelength routed optical networks: linear formulation resource budgeting tradeoff and a reconfiguration study. IEEE/ACM Trans. Netw. 8(5), 684–696 (2000)CrossRefGoogle Scholar
  5. 5.
    Yan S., Ali M., Deogun J.: Route optimization of multicast sessions in sparse light-splitting optical networks. IEEE GLOBECOM 4, 2134–2138 (2001)Google Scholar
  6. 6.
    Mukherjee B., Ramamurthy S., Banerjee D., Mukherjee A.: Some principles for designing a wide-area WDM optical network. IEEE/ACM Trans. Netw. 4(5), 684–696 (1996)CrossRefGoogle Scholar
  7. 7.
    Ali, M., Ramamurthy, B., Deogun, J.S.: Routing algorithms for all-optical networks with power consideration: the unicast case. In: Proceedings of the 8th IEEE ICCCN, pp. 335–340 (1999)Google Scholar
  8. 8.
    Banerjee, N., Mehta, V., Pandey, S.: A genetic algorithm approach for solving the routing and wavelength assignment problem in WDM networks. In: 3rd IEEE/IEE International Conference on Networking, pp. 70–78 (2004)Google Scholar
  9. 9.
    Zong L., Ramamurthy B.: Optimization of amplifier placement in switch-based optical network. Proc. IEEE ICC 1, 224–228 (2001)Google Scholar
  10. 10.
    Tomkos I., Vogiatzis D., Mas C., Zacharopoulos I., Tzanakaki A., Varvarigos E.: Performance engineering of metropolitan area optical networks through impairment constraint routing. IEEE Opt. Commun. Mag. 42, 40–47 (2004)CrossRefGoogle Scholar
  11. 11.
    Markidis, G., Sygletos, S., Tzanakaki, A., Tomkos, I.: Impairment aware based routing and wavelength assignment in transparent long haul networks. Optical network design and monitoring. In: Lecture Notes in Computer Science (series), Optical Network Design and Modeling (pp. 48–57). Springer Berlin / Heidelberg (2007)Google Scholar
  12. 12.
    Brandt-Pearce, J.H., Pointurier, M., Subramaniam, Y.: QoT-aware routing in impairment-constrained optical networks. In: Proceedings of GLOBECOM, pp. 26–30, Washington DC (2007)Google Scholar
  13. 13.
    Ezzahdi, M., Zahr, S., Koubaa, M., Puech, N., Gagnaire, M.: LERP: a quality of transmission dependent heuristic for routing and wavelength assignment in hybrid WDM networks. In: Proceedings of ICCCN, pp. 125–136 (2006)Google Scholar
  14. 14.
    Deng T., Subramaniam S.: Adaptive QoS routing in dynamic wavelength-routed optical networks. Proc. BROADNETS 1, 184–193 (2005)Google Scholar
  15. 15.
    Kilper D.C., Bach R., Blumenthal D.J., Einstein D., Landolsi T., Ostar L., Preiss M., Willner A.E.: Optical performance monitoring. IEEE/OSA. J. Lightwave Technol. 22(1), 294–304 (2004). doi: 10.1109/JLT.2003.822154 CrossRefGoogle Scholar
  16. 16.
    ITU-T Draft New Recom. G.697. Optical Monitoring for DWDM Systems (2004)Google Scholar
  17. 17.
    Farrel, A., Vasseur, J. P., Ash, J.: A path computation element (PCE)-based architecture. IETF RFC 4655 (2006)Google Scholar
  18. 18.
    Jukan A., Franzl G.: Path selection methods with multiple constraints in service-guaranteed WDM networks. IEEE-ACM Trans. Netw. 12(1), 59–72 (2004)CrossRefGoogle Scholar
  19. 19.
    Zsigmond, S., Németh, G., Cinkler, T.: Mutual impact of physical impairments and grooming in multilayer networks. In: Proceedings of ONDM, pp. 38–47 (2007)Google Scholar
  20. 20.
    Winzer P.J., Essiambre R.-J.: Advanced optical modulation formats (Invited). Proc. IEEE 94(5), 952–985 (2006). doi: 10.1109/JPROC.2006.873438 CrossRefGoogle Scholar
  21. 21.
    Poole D., Tkach R.W., Chraplyvy A.R., Fishman D.A.: Fading in lightwave systems due to polarization-mode dispersion. IEEE Photon. Technol. Lett. 3(1), 68–70 (1991). doi: 10.1109/68.68051 CrossRefGoogle Scholar
  22. 22.
    Bulow, H., Baumert, W., Schmuck, H., Mohr, F., Schulz, T., Kuppers, F., Weiershausen, W.: Measurement of the maximum speed of PMD fluctuation in installed field fiber. In: Proceedings of OFC/IOOC, pp. 83–85 (1999)Google Scholar
  23. 23.
    Peterson, N.: Performance monitoring in the next generation of optical networks. In: Proceedings of Photonics in Switching (2006)Google Scholar
  24. 24.
    ITU-T G.984. 1,2,3,4. GPON recommendations (2004)Google Scholar
  25. 25.
    Chongjin X., Kilper D.C., Moller L., Ryf R.: Orthogonal-polarization heterodyne OSNR monitoring insensitive to polarization-mode dispersion and nonlinear polarization scattering. IEEE/OSA. J. Lightwave Technol. 25, 177–183 (2007). doi: 10.1109/JLT.2006.888171 CrossRefGoogle Scholar
  26. 26.
    Adams R., Rochette M., Ng T., Eggleton B.J.: All-optical in-band OSNR monitoring at 40 Gbit/s using a nonlinear optical loop mirror. IEEE Photon. Technol. Lett. 18(3), 469–471 (2006). doi: 10.1109/LPT.2005.863641 CrossRefGoogle Scholar
  27. 27.
    Wong E., Tan J., Nirmalathas A.: Novel scheme for simultaneous polarization mode dispersion and optical signal-to-noise ratio monitoring. Proc. ECOC 3, 697–698 (2005)Google Scholar
  28. 28.
    Liu N., Zhong W.-D., Wen Y.J., Lu C., Cheng L., Wang Y.: PMD and chirp effects suppression in RF tone-based chromatic dispersion monitoring. IEEE Photon. Technol. Lett. 18(5), 673–675 (2006)CrossRefGoogle Scholar
  29. 29.
    Park, K.J., Lee, J.H., Young, C.J., Chung, Y.C.A.: Simultaneous monitoring technique for polarization-mode dispersion and group-velocity dispersion. In: Proceedings of OFC, pp. 199–200 (2002)Google Scholar
  30. 30.
    Inui T., Komukai T., Mori K., Morioka T.: 160-Gbit/s adaptive dispersion equalization using an asynchronous dispersion-induced chirp monitor. IEEE/OSA. J. Lightwave Technol. 23, 2039–2045 (2005). doi: 10.1109/JLT.2005.849878 CrossRefGoogle Scholar
  31. 31.
    Maguire P.J., Bondarczuk K., Barry P.P., O’Dowd J., Guo W.H., Lynch M., Bradley A.L., Donegan J.F., Folliot H.: Chromatic dispersion monitoring of 80 Gbit/s OTDM data signal via two-photon absorption in a semiconductor microcavity. IEEE Photon. Technol. Lett. 19(1), 21–23 (2007)CrossRefGoogle Scholar
  32. 32.
    Yang J.-Y., Zhang L., Christen L.C., Zhang B., Nuccio S., Wu X., Yan L.-S., Yao S., Willner A.E.: Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter. IEEE Photon. Technol. Lett. 20(2), 150–152 (2008). doi: 10.1109/LPT.2007.912505 CrossRefGoogle Scholar
  33. 33.
    Willner A.E., Nezam S.M.R.M., Yan L., Zhongqi P., Hauer M.C.: Monitoring and control of polarization-related impairments in optical fiber systems. IEEE/OSA.J. Lightwave Technol. 22, 106–125 (2004). doi: 10.1109/JLT.2003.822556 CrossRefGoogle Scholar
  34. 34.
    Lizé Y.K., Christen L., Yang J.-Y., Saghari P., Nuccio S., Willner A.E., Kashyap R.: Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission. IEEE Photon. Technol. Lett. 19(1), 3–5 (2007). doi: 10.1109/LPT.2006.888039 CrossRefGoogle Scholar
  35. 35.
    Morawski, R.Z., Miekina, A., Barwicz, A.: Curve-fitting algorithms versus neural networks when applied for estimation of wavelength and power in DWDM systems. IEEE Trans. Instrum. Meas. 54(5), 2027–2032 (2005). doi: 10.1109/TIM.2005.853350
  36. 36.
    Lazaro J.A., Bock C., Polo V., Martinez R.I., Prat J.: Remotely amplified combined ring-tree dense access network architecture using reflective RSOA-based ONU. J. Opt. Netw. 6(6), 801–807 (2007). doi: 10.1364/JON.6.000801 CrossRefGoogle Scholar
  37. 37.
    Lazaro, J.A., Prat, J., Chanclou, P., Beleffi, G.M.T., Teixeira, A., Tomkos, I., Soila, R., Koratzinos, V.: Scalable extended reach PON (Invited). In: Proceedings of OFC/NFOEC, OThL2 (2008)Google Scholar
  38. 38.
    Polo, V., Ausiro, A., Prat, J., Junyent, G.: GCSR laser frequency drift compensation using optimized current waveform on one single electrode. Proc. ICTON, 2, 17–20, We.A1.5 (2005)Google Scholar
  39. 39.
    Kazmierski, C., Chanclou, P., Lazaro, J.A.: Advanced component technologies for colourless access networks. (Invited), In: Proceedings of SPIE, p. 6782 (2007)Google Scholar
  40. 40.
    Gnauck H., Cimini L.J.Jr., Stone J., Stulz L.W.: Optical equalization of fiber chromatic dispersion in a 5-Gbit/s transmission system. IEEE Photon. Technol. Lett. 2(8), 585–587 (1990). doi: 10.1109/68.58056 CrossRefGoogle Scholar
  41. 41.
    Vázquez C., Vargas S.E., Sánchez Pena J.M.: Sagnac loop in ring resonators for tunable optical filters. IEEE/OSA. J. Lightwave Technol. 23(8), 2555–2567 (2005). doi: 10.1109/JLT.2005.850793 CrossRefGoogle Scholar
  42. 42.
    Vargas S.E., Vázquez C.: Synthesis of optical filters using sagnac interferometer in ring resonator. IEEE Photon. Technol. Lett. 19(23), 1877 (2007). doi: 10.1109/LPT.2007.908735 CrossRefGoogle Scholar
  43. 43.
    Maeda M.: Management and control of transparent optical networks. (Invited). IEEE J. Sel. Areas Commun. 16(7), 1008–1023 (1998). doi: 10.1109/49.725174 CrossRefGoogle Scholar
  44. 44.
    Mas C., Tomkos I., Tonguz O.K.: Failure location algorithm for transparent optical networks. IEEE J. Sel. Areas Commun. 23(8), 1508–1519 (2005). doi: 10.1109/JSAC.2005.852182 CrossRefGoogle Scholar
  45. 45.
    Cugini, F., Andriolli, N., Valcerenghi, L., Castoldi, P.: A novel signaling approach to encompass physical impairments in GMPLS networks. Procedings of GLOBECOM Workshops pp. 369–373 (2004)Google Scholar
  46. 46.
    Bernstein G., Rajagopalan B., Saha S.: Optical Network Control: Architecture, Protocols & Standards. Addison-Wesley, Reading, MA (2004)Google Scholar
  47. 47.
    Bernstein, G.: Optical network control—concepts, standardization and interoperability. In: Proceedings of ECOC, We.1.2.1. (2004)Google Scholar
  48. 48.
    Ali M.E.-D., Cosaque D., Tancevski L.: Enhancements to multi-protocol lambda switching to accommodate transmission impairments. Proc. GLOBECOM 1, 70–75 (2001)Google Scholar
  49. 49.
    Lavigne, B., Leplingard, F., Lorcy, L., Almefrezol, E., Antona, J.-C., Zami, T., Bayart, D.: Method for the determination of a quality of transmission estimator along the lightpaths of partially transparent networks. In: Proceedings of ECOC, 8.5.2 (2007)Google Scholar
  50. 50.
    Morea, A.: Etude des réseaux optiques translucides: évaluation de leur faisabilité technique et de leur intérét économique. Doctorat Informatique et Réseaux. INFRES, ENST. Paris (2006)Google Scholar
  51. 51.
    Antona, J.-C., Bigo, S., Faure, J.-P.: Nonlinear cumulated phase as a criterion to assess performance of terrestrial WDM systems. In: Proceedings of OFC, pp. 365–367 (2002)Google Scholar
  52. 52.
    Hamel, A., Gavignet, P., Salann, S., Poirrier, J.: Design trade-off for high PMD routes in installed transmission systems. In: Proceedings of OFC/NFOEC, OFL4 (2006)Google Scholar
  53. 53.
    Leplingard, F., Zami, T., Morea, A., Brogard, N., Bayart, D.: Determination of the impact of a quality of transmission estimator margin on the dimensioning of an optical network. In: Proceedings of OFC/NFOEC, OWA6 (2008)Google Scholar
  54. 54.
    Tomkos, I., Sygletos, S., Tzanakaki, A., Markidis, G.: Impairment constraint based routing in mesh optical networks. (Invited). In: Proceedings of OFC/NFOEC, OWR1 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Teixeira
    • 1
    Email author
  • L. Costa
    • 1
  • G. Franzl
    • 2
  • S. Azodolmolky
    • 3
  • I. Tomkos
    • 3
  • K. Vlachos
    • 4
  • S. Zsigmond
    • 5
  • T. Cinkler
    • 5
  • G. Tosi-Beleffi
    • 6
  • P. Gravey
    • 7
  • T. Loukina
    • 7
  • J. A. Lázaro
    • 8
  • C. Vazquez
    • 9
  • J. Montalvo
    • 9
  • E. Le Rouzic
    • 10
  1. 1.Instituto de TelecomunicaçõesAveiroPortugal
  2. 2.Institute of Broadband CommunicationsVienna University of TechnologyViennaAustria
  3. 3.Athens Information TechnologyPeania, AthensGreece
  4. 4.University of PatrasRioGreece
  5. 5.Budapest University of Technology and EconomicsBudapestHungary
  6. 6.Instituto Superiore della Communicazioni e delle Tecnologiedell’InformazioneRomeItaly
  7. 7.Institut TELECOM, TELECOM Bretagne, Technopôle Brest-Iroise CSBrest Cedex 3France
  8. 8.Universitat Politécnica de CatalunyaBarcelonaSpain
  9. 9.Universidad Carlos III de MadridLeganés, MadridSpain
  10. 10.France TelecomLannion CedexFrance

Personalised recommendations