Photonic Network Communications

, Volume 18, Issue 2, pp 129–136 | Cite as

Deflection-based transmission protocol for LAN operation in a PON system

  • Jae-Gwan Kim
  • Chang-Joon Chae
  • Hai L. Vu
  • Min-Ho Kang


In this paper, we propose and evaluate a new deflection transmission scheme for communication between local customers in a passive optical network (PON). In particular, we provide an analytical model to approximate the average packet delay of the proposed scheme in a local area network (LAN) operating within the PON (referred to as LAN-PON system). The accuracy of our model is validated by simulation. Furthermore, our simulation results show that a LAN-PON with a deflection scheme can achieve > 80% bandwidth gain using < 125 μs switching time compared to that of the traditional PON system for the cases studied.


Passive optical network (PON) Local area network (LAN) Local customer networking Deflection transmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Effenberger F.J., Ichibangase H., Yamashita H.: Advances in broadband passive optical networking echnologies. IEEE Commun. Mag. 39(12), 118–124 (2001). doi: 10.1109/35.968822 CrossRefGoogle Scholar
  2. 2.
    Kramer G., Mukherjee B., Maislos A.: Ethernet Passive Optical networks in IP Over WDM: Buliding the Next Generation Optical Internet, pp. 229–275. Wiley, New York (2003)Google Scholar
  3. 3.
    Chae C.-J., Lee S.-T., Kim G.-Y., Park H.: A PON system suitable for internetworking optical network units using a fiber Bragg Grating on the feeder fiber. IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999). doi: 10.1109/68.806888 CrossRefGoogle Scholar
  4. 4.
    Wong E., Chae C.-J.: CSMA/CD-based Ethernet passive optical network with optical internetworking capability among isers. IEEE Photon. Technol. Lett. 16(9), 2195–2197 (2004). doi: 10.1109/LPT.2004.833047 CrossRefGoogle Scholar
  5. 5.
    Nadarajah N., Attygalle M., Nirmalathas A., Wong E.: A novel local area network emulation technique on passive optical networks. IEEE Photon. Technol. Lett. 17(5), 1121–1123 (2005). doi: 10.1109/LPT.2005.845736 CrossRefGoogle Scholar
  6. 6.
    Tran A.V., Chae C.-J.: Bandwidth-efficient PON system for broad-band access and local customer internetworking. IEEE Photon. Technol. Lett. 18(5), 670–672 (2006). doi: 10.1109/LPT.2006.870058 CrossRefGoogle Scholar
  7. 7.
    Kim, J.-G., Chae, C.-J.: A high-performance PON system for both access and local networking using wavelength-switchable transceivers. In: Proceedings of Optical Fiber Communication Conference, Los Angeles (2007), paper OTUG1Google Scholar
  8. 8.
    Angelopoulos J.D.: Efficient transport of packets with QoS in an FSAN-aligned GPON. IEEE Commun. Mag. 42(2), 93–98 (2004). doi: 10.1109/MCOM.2003.1267106 CrossRefGoogle Scholar
  9. 9.
    Khan, K., Peyravi, H.: Delay and queue size analysis of TDMA with general traffic. In: Proceedings of the Sixth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Montreal, pp. 217–225 (1998)Google Scholar
  10. 10.
    Lam S.S.: Delay analysis of a time division multiple access (TDMA) channel. IEEE Trans. Commun. 25(12), 1489–1494 (1977). doi: 10.1109/TCOM.1977.1093784 CrossRefGoogle Scholar
  11. 11.
    OPNET modeler,

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jae-Gwan Kim
    • 1
  • Chang-Joon Chae
    • 2
  • Hai L. Vu
    • 3
  • Min-Ho Kang
    • 1
  1. 1.Optical Internet Research CenterInformation and Communications UniversityDaejonSouth Korea
  2. 2.Victoria Research LaboratoryNational ICT Australia Ltd., The University of MelbourneMelbourne, VICAustralia
  3. 3.Center for Advanced Internet ArchitecturesSwinburne University of TechnologyMelbourne, VICAustralia

Personalised recommendations