Advertisement

Photonic Network Communications

, Volume 17, Issue 3, pp 218–225 | Cite as

A frequent-pattern approach for optical networks routing planning

  • I-Shyan Hwang
  • Chaochang Chiu
  • Zen-Der Shyu
Article
  • 45 Downloads

Abstract

Optical burst switching (OBS) networks have been receiving much attention as a promising approach to build the next generation optical Internet. In the bufferless DWDM switching technology, burst loss that should be minimized is the key design parameter. One of the critical design issues in OBS network is how to plan the optimal routing path in order to minimize burst dropping due to network resource contention. This study proposes the burst frequent-pattern tree (BFP-Tree) approach to pre-determine a suitable routing path in the OBS network. The BFP-Tree approach essentially is a learning-based mechanism that is able to determine a suitable transmission path from the historical network transaction data. The experiment results show that the successful rates of routing paths obtained by the BFP-Tree approach are able to converge to those of the optimal results.

Keywords

Optical burst switching Routing path Network management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaminow I.P. et al.: A wideband all-optical WDM network. IEEE J. Sel. Areas Commun. 14(5), 780–799 (1996) doi: 10.1109/49.510903 CrossRefGoogle Scholar
  2. 2.
    Qiao C., Yoo M.: Optical burst switching (OBS)-a new paradigm for an optical internet. J. High Speed Netw 8(1), 69–84 (1999)Google Scholar
  3. 3.
    Li J., Qiao C., Chen Y.: Recent progress in the scheduling algorithms in optical-burst-switching networks. J. Opt. Networking 3(4), 229–241 (2004) doi: 10.1364/JON.3.000229 CrossRefGoogle Scholar
  4. 4.
    Karasan E., Ayanoglu E.: Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks. IEEE/ACM Trans. Networking 6(2), 186–196 (2002)CrossRefGoogle Scholar
  5. 5.
    Teng J., Rouskas G.N.: Wavelength selection in OBS networks using traffic engineering and priority-based concepts. IEEE J. Sel. Areas Commun. 23(8), 1658–1669 (2005) doi: 10.1109/JSAC.2005.851794 CrossRefGoogle Scholar
  6. 6.
    Bregni S., Guerra G., Pattavina A.: Optical switching IP traffic using input buffered architectures. Opt. Netw. Mag. 3(6), 20–29 (2002)Google Scholar
  7. 7.
    Hunter D.K., Chia M.C., Andonovic I.: Buffering in optical packet switches, IEEE/OSA. J. Lightwave Technol. 16(12), 2081–2094 (1998) doi: 10.1109/50.736577 CrossRefGoogle Scholar
  8. 8.
    Anpeng H., Linzhen X.: A novel segmentation and feedback model for resolving contention in optical burst switching. Photonic Netw. Commun. 6(1), 61–67 (2003) doi: 10.1023/A:1023638825222 CrossRefGoogle Scholar
  9. 9.
    Lee S., Kim H., Song J., Griffith D.: A study on deflection routing in optical burst-switched networks. Photonic Netw. Commun. 6(1), 51–59 (2003) doi: 10.1023/A:1023686708384 CrossRefGoogle Scholar
  10. 10.
    Wang X., Morikawa H., Aoyama T.: Priority-based wavelength assignment algorithm for burst switched WDM optical networks. IEICE Trans. Commun. e86-b(5), 1508–1514 (2003)Google Scholar
  11. 11.
    Ishii D., Yamanaka N., Sasase I.: Self-learning route selection scheme using multi-path searching packets in an OBS network. J. Opt. Networking 4(7), 432–445 (2005) doi: 10.1364/JON.4.000432 CrossRefGoogle Scholar
  12. 12.
    Yang L., Rouskas G.N.: Adaptive path selection in OBS networks, IEEE/OSA. J. Lightwave Technol. 24(8), 3002–3011 (2006) doi: 10.1109/JLT.2006.878087 CrossRefGoogle Scholar
  13. 13.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. Proceedings of the ACM-SIGMOD International Conference, pp. 207–216. Washington, D. C., USA, May 1993Google Scholar
  14. 14.
    Borgelt, C., Kruse, R.: Induction of association rules: apriori implementation. 15th Conference on Computational Statistics, pp. 395–400, (Compstat 2002, Berlin, Germany). Physica Verlag, Heidelberg, Germany (2002)Google Scholar
  15. 15.
    Orlando, S., Palmerini, P., Perego, R.: Enhancing the apriori algorithm for frequent set counting. Proceedings of the 3rd International Conference on Data Warehousing and Knowledge Discovery, pp. 71–82. Munich, Germany, September 5–7, (2001)Google Scholar
  16. 16.
    Chen G., Wei Q.: Fuzzy association rules and the extended mining algorithms. Inf. Sci. 147(1–4), 201–228 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Han J., Pei J., Yin Y., Mao R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004) doi: 10.1023/B:DAMI.0000005258.31418.83 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hwang I.S., Chiu C.C., Su R.R., Shyu Z.D.: Burst routing planning for optical networks using the association rule approach. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 6(10), 173–178 (2006)Google Scholar
  19. 19.
    Wu C.: Applying frequent itemset mining to identify a small itemset that satisfies a large percentage of orders in a warehouse. Comput. Oper. Res. 33(11), 3161–3170 (2006) doi: 10.1016/j.cor.2005.01.026 zbMATHCrossRefGoogle Scholar
  20. 20.
    Qiao C.: Labeled optical burst switching for IP-over-WDM integration. IEEE Commun. Mag. 38(9), 104–114 (2000) doi: 10.1109/35.868149 CrossRefGoogle Scholar
  21. 21.
    Maunder, A.S., Hjálmtýsson, G., VanderMerwe, K., Ramakrishnan K.K.: Evaluating the performance of UNITE’s hop-by-hop routing vs. source routing, ATM Forum/98–0784, October (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer Engineering and ScienceYuan Ze UniversityChung-LiTaiwan
  2. 2.Department of Information ManagementYuan Ze UniversityChung-LiTaiwan
  3. 3.Department of General StudiesArmy AcademyChung-LiTaiwan

Personalised recommendations