Scheduling in overlaid star all-photonic networks with large propagation delays



This paper describes a framework for fixed- length frame scheduling in all-photonic networks with large propagation delays. We introduce the Fair Matching Algorithm a novel scheduling approach that results in weighted max-min fair allocation of extra slots, achieves zero rejection for admissible demands, and minimizes the maximum percentage rejection of any connection. We also propose the Minimum Rejection Algorithm, which minimizes total rejection but treats non-critical connections in a fair manner. Finally, we introduce a feedback control system based on Smith’s principle that reduces the effect of prediction errors and increases the speed of the response to the sudden changes in traffic arrival rates. Simulations performed using OPNET Modeler explore the performance of the scheduling and control algorithms we propose.


All-photonic networks Scheduling Max-min fairness Star topology 


  1. 1.
    Anderson T., Owicki S., Saxe J., Thacker C.: High-speed switch scheduling for local-area networks. ACM Trans. Comp. Syst. 11(4), 319–352 (1993)CrossRefGoogle Scholar
  2. 2.
    Bauer, P.H., Sichitiu, M.L., Ernst, R., Premaratne, K.: A new class of Smith predictors for network congestion control. In: Proceedings of International IEEE Conference on Electronics, Circuits, and Systems (ICECS), St. Julian’s, Malta, pp. 685–688 (2001)Google Scholar
  3. 3.
    Bianco A., Careglio D., Finochietto J., Galante G., Leonardi E., Neri F., Solé-Pareta J., Spadaro S.: Multiclass scheduling algorithms for the DAVID metro network. IEEE J. Sel. Area Comm. 22(8), 1483–1496 (2004)CrossRefGoogle Scholar
  4. 4.
    Bochmann, G., Coates, M., Hall, T., Mason, L., Vickers, R., Yang, O.: The agile all-photonic network: An architectural outline. In: Proceedings of Queens’ Biennial Symposium on Communications, Kingston, Canada, pp. 217–218 (2004)Google Scholar
  5. 5.
    Bogineni K., Sivalingham K.M., Dowd P.W.: Low-complexity multiple access protocols for wavelength-division multiplexed photonic networks. IEEE J. Sel. Area Comm. 11(4), 590–604 (1993)CrossRefGoogle Scholar
  6. 6.
    Cormen T., Leiserson C., Rivest R., Stein C.: Introduction to Algorithms. MIT Press, Cambridge, MA (2001)MATHGoogle Scholar
  7. 7.
    Crescenzi P., Deng X., Papadimitriou C.H.: On approximating a scheduling problem. J. Comb. Optim. 5(3), 287–297 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ford L.R. Jr, Fulkerson D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)MATHMathSciNetGoogle Scholar
  9. 9.
    Ganz A., Gao Y.: Efficient algorithms for SS/TDMA scheduling. IEEE Trans. Comm. 40(6), 1367–1374 (1992a)MATHCrossRefGoogle Scholar
  10. 10.
    Ganz, A., Gao, Y.: A time-wavelength assignment algorithm for a WDM star network. In: Proceedings of IEEE INFOCOM, Florence, Italy, vol. 3, pp. 2144–2150 (1992)Google Scholar
  11. 11.
    Gopal I.S., Wong C.K.: Minimizing the number of switchings in an SS/TDMA system. IEEE Trans. Comm. 33, 1497–1501 (1985)Google Scholar
  12. 12.
    Keslassy, I., Kodialam, M., Lakshman, T., Stiliadis, D.: Scheduling schemes for delay graphs with applications to optical packet networks. In: Proceedings of IEEE Workshop High Performance Switching and Routing, Phoenix, AZ (2003)Google Scholar
  13. 13.
    Liu, X., Saberi, N., Coates, M., Mason, L.: A comparison between time-slot scheduling approaches for all-photonic networks. In: Proceedings of International Conference on Inf., Comm. and Signal Processing (ICICS), Bangkok, Thailand, pp. 1197–1201 (2005)Google Scholar
  14. 14.
    Marsan M., Bianco A., Leonardi E., Neri F., Nucci A.: Simple on-line scheduling algorithms for all-optical broadcast-and select networks. IEEE Eur. Trans. Telecom. 11(1), 109–116 (2000)CrossRefGoogle Scholar
  15. 15.
    Mascolo S.: Congestion control in high-speed communication networks using the Smith principle. Automatica 35(12), 1921–1935 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mason L., Vinokurov A., Zhao N., Plant D.: Topological design and dimensioning of agile all photonic networks. Comput. Netw. 50(2), 268–287 (2006)MATHCrossRefGoogle Scholar
  17. 17.
    Mataušek M., Micić A.: A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans. Automat. Cont. 41(8), 1199–1203 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    McKeown, N. Scheduling algorithms for input-queued cell switches. Ph.D. thesis, University of California at Berkeley (1995)Google Scholar
  19. 19.
    McKeown, N., Anantharam, V., Walrand, J.: Achieving 100% throughput in an input-queued switch. In: Proceedings of IEEE INFOCOM, San Francisco, CA, vol. 1, pp. 296–302 (1996)Google Scholar
  20. 20.
    Opnet Technologies, Inc: OPNET modeler 12.1.
  21. 21.
    Peng, C., Paredes, S., Hall, T.J., von Bochmann, G.: Constructing service matrices for agile all-optical cores. In: Proceedings of IEEE International Symposium on Computers and Communication (ISCC), Sardinia, Italy, pp. 967–973 (2006)Google Scholar
  22. 22.
    Pomalaza-Raez C.A.: A note on efficient SS/TDMA assignment algorithms. IEEE Trans. Comm. 36, 1078–1082 (1988)CrossRefGoogle Scholar
  23. 23.
    Ramaswami R., Sivarajan K.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995)CrossRefGoogle Scholar
  24. 24.
    Rivera D.E., Morari M., Skogestad S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Proc. Design Dev. 25, 252–265 (1986)CrossRefGoogle Scholar
  25. 25.
    Rouskas, G.N., Ammar, M.H.: Analysis and optimization of transmission schedules for single-hop WDM networks. In: Proceedings of IEEE INFOCOM, San Francisco, CA, vol. 3, pp. 1342–1349 (1993)Google Scholar
  26. 26.
    Saberi, N.: Bandwidth allocation and scheduling in photonic networks. PhD thesis, McGill University (2007)Google Scholar
  27. 27.
    Saberi, N., Coates, M.: Fair matching algorithm: An optimal scheduling algorithm for the AAPN network. Technical report, McGill University, Montreal, Canada (2005), available at
  28. 28.
    Saberi, N., Coates, M.: Fair matching algorithm: Fixed-length frame scheduling in all-photonic networks. In: Proceedings of IASTED International Conference Optical Communication Systems and Networks, Alberta, Canada, pp. 213–218 (2006)Google Scholar
  29. 29.
    Saberi, N., Coates, M.: Minimum rejection scheduling in all-photonic networks. In: Proceedings of IEEE BROADNETS, San Jose, CA, pp. 1–10 (2006)Google Scholar
  30. 30.
    Saberi, N., Coates, M.: Feedback control system for scheduling of wide-area all-photonic networks. In: Proceedings of IEEE International Symposium Computers and Communication (ISCC), Aveiro, Portugal, pp. 115–120 (2007)Google Scholar
  31. 31.
    Sang, A., Li, S.Q.: A predictability analysis of network traffic. In: Proceedings of IEEE INFOCOM, Tel Aviv, Israel, vol. 1, pp. 342–351 (2000)Google Scholar
  32. 32.
    Smith O.: A controller to overcome dead-time. J. ISA 6(2), 28–33 (1959)Google Scholar
  33. 33.
    Towles B., Dally W.J.: Guaranteed scheduling for switches with configuration overhead. IEEE/ACM Trans. Netw. 11(5), 835–847 (2003)CrossRefGoogle Scholar
  34. 34.
    Xu L., Perros H., Rouskas G.: Techniques for optical packet switching and optical burst switching. IEEE Comm. Mag. 39(1), 136–142 (2001)CrossRefGoogle Scholar
  35. 35.
    Zheng, J., Peng, C., von Bochmann, G., Hall, T.J.: Load balancing in all-optical overlaid-star tdm networks. In: Proceedings of IEEE Sarnoff Symposium, Princeton, NJ, pp. 1–4 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada

Personalised recommendations