Advertisement

Photonic Network Communications

, Volume 14, Issue 1, pp 11–22 | Cite as

On the performance of different node configurations in multi-fiber optical packet-switched networks

  • Yi Li
  • Gaoxi XiaoEmail author
  • H. Ghafouri-Shiraz
Original Article

Abstract

With the development of optical packet-switching (OPS) technologies, multi-fiber OPS networks will play an important role in the future data transmissions. In such networks, instead of constructing some extremely expensive node configurations with strictly non-blocking switching function, a more practical solution is multi-board switches that contain a number of small-sized switching boards. In this article, we have evaluated the performance of several different multi-board switches, based on the following two main objectives: (i) better understanding the effects of different connection schemes between switching boards and optical buffers and (ii) investigating possible schemes for achieving comparable performance to that of the ideal, strictly non-blocking switches. Extensive simulation results have shown that unlike circuit-switched net- works, multi-board OPS cannot easily perform comparably to the strictly non-blocking switch by having slightly more fibers per link. Also, such a problem can be tackled by several different approaches. The most efficient one is to equip the switch with more buffers rather than to increase the switching-board size or to enhance the buffer sharing between different switching boards.

Keywords

Optical packet switch Multi-fiber network Packet contention Multi-board optical switch Optical buffer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramaswami R., Sivarajan K.N.: Optical Networks: A Practical Perspective. Morgan Kaufmann Publishers (1998)Google Scholar
  2. 2.
    Ramaswami R. (2002) Optical fiber communication: from transmission to networking. IEEE Commun. Mag. 40(5): 138–147CrossRefGoogle Scholar
  3. 3.
    Hunter D.K., Andonovic I. (2000) Approaches to optical Internet packet switching. IEEE Commun. Mag. 38(9): 116–122CrossRefGoogle Scholar
  4. 4.
    Monacos S.P., Morookian J.M., Davis L., Bergman L., Forouhar S., Sauer J.R. (1996) All-optical WDM packet networks. IEEE/OSA J. Lightwave Technol. 14(6): 1356–1370CrossRefGoogle Scholar
  5. 5.
    Chan V.W.S., Hall K.L., Modiano E., Rauschenbach K.A. (1998) Architecture and technologies for high-speed optical data networks. IEEE/OSA J. Lightwave Technol. 16(12): 2146–2168CrossRefGoogle Scholar
  6. 6.
    Chlamtac I., et al. (1996) CORD: Contention resolution by delay lines. IEEE J. Select. Areas Commun. 14(5): 1014–1029CrossRefGoogle Scholar
  7. 7.
    Hunter D.K., Chia M.C., Andonovic I. (1998) Buffering in optical packet switches. IEEE/OSA J. Lightwave Technol. 16(12): 2081–2094CrossRefGoogle Scholar
  8. 8.
    Hunter D.K., Cornwell W.D., Gilfedder T.H., Franzen A., Andonovic I. (1998) SLOB: A switch with large optical buffers for packet switching. IEEE/OSA J. Lightwave Technol. 16(10): 1725–1736CrossRefGoogle Scholar
  9. 9.
    Diao J., Chu P.L. (1999) Analysis of partially shared buffering for WDM optical packet switching. IEEE/OSA J. Lightwave Technol. 17(12): 2461–2469CrossRefGoogle Scholar
  10. 10.
    Danielsen S.L., Hansen P.B., Stubkjaer K.E. (1998) Wavelength conversion in optical packet switching. IEEE/OSA J. Lightwave Technol. 16(9): 2095–2108CrossRefGoogle Scholar
  11. 11.
    Ramamurthy B., Mukherjee B.3 (1998) Wavelength conversion in WDM networking. IEEE J. Select. Areas Commun. 16(7): 1061–107CrossRefGoogle Scholar
  12. 12.
    Sudb A.S., Bjrnstad S. (2003) Scalable optical switch structure based on tunable wavelength converters and arrayed waveguide grating routers. OSA J. Optical Network 2(9): 340–349Google Scholar
  13. 13.
    Ciaramella E., Contestabile G., Curti F., D’Ottavi A. (2000) Fast tunable wavelength conversion for all-optical packet switching. IEEE Photonics Technol. Letts. 12(10): 1361–1363CrossRefGoogle Scholar
  14. 14.
    Qin X., Yang Y. (2002) Nonblocking WDM switching networks with full and limited wavelength conversion. IEEE Trans. Commun. 50(12): 2032–2041CrossRefGoogle Scholar
  15. 15.
    El-Bawab T.S., Shin J. (2002) Optical packet switching core networks: Between vision and reality. IEEE Commun. Mag. 40(9): 60–65CrossRefGoogle Scholar
  16. 16.
    Yao S., Mukherjee B., Yoo S.J.B., Dixit S. (2003) A unified study of contention-resolution schemes in optical packet-switched networks. IEEE/OSA J. Lightwave Technol. 21(3): 672–683CrossRefGoogle Scholar
  17. 17.
    Marsan M.A., Fumagalli A., Leonardi E., Neri F., Poggiolini P. (1998) Daisy: A scalable all-optical packet network with multifiber ring topology. Comput. Networks ISDN Syst. 30(11): 1065–1082CrossRefGoogle Scholar
  18. 18.
    Li L., Somani A.K. (2000) A new analytical model for multifiber WDM networks. IEEE J. Select. Areas Commun. 18(10): 2138–2145CrossRefGoogle Scholar
  19. 19.
    Gipser T., Jager H.A., Rapp L. (1998) Broadcasting, scalability, and reconfigurability aspects in an all-optical network architecture. Fiber Integrat. Optics 17(1): 21–40CrossRefGoogle Scholar
  20. 20.
    Leung Y., Xiao G., Hung K. (2002) Design of node configuration for all-optical multi-fiber networks. IEEE Trans. Commun. 50(1): 135–145CrossRefGoogle Scholar
  21. 21.
    Harai H., Wada N., Kubota F., Chujo W. (2002) Contention resolution using multi-stage fiber delay line buffer in a photonic packet switch. Proc. of IEEE ICC ’02 (New York, NY, USA) 5: 2843–2847Google Scholar
  22. 22.
    Jiang S., Hu G., Liew S.Y., Chao H.J. (2005) Scheduling algorithm for shared fiber-delay-line optical packet switches-part II: the three-stage clos-network case. IEEE/OSA J. Lightwave Technol. 23(4): 1601–1609CrossRefGoogle Scholar
  23. 23.
    Li Y., Xiao G., Ghafouri-Shiraz H. (2004) On the benefits of multifiber optical packet switch. Microwave Optical Technol Letts 43(5): 376–378CrossRefGoogle Scholar
  24. 24.
    Luo Y., Ansari N. (2003) Performance evaluation of survivable multifiber WDM networks. Proc. IEEE Globecom ’03 (San Francisco, CA, USA) 5, 2524–2528Google Scholar
  25. 25.
    Cao X., Anand V., Xiong Y., Qiao C. (2003) Performance evaluation of wavelength band switching in multi-fiber all-optical networks. Proc. IEEE INFOCOM ’03 (San Francisco, CA, USA) 3, 2251–2261Google Scholar
  26. 26.
    Nagatsu N., Watanabe A., Okamoto S., Sato K. Performance and node architecture of WDM multiple fiber ring networks. Proc. IEEE ICC’ 98 (Atlanta, GA, USA) 931–936 (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Network Technology Research Centre, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Electronic, Electrical and Computer EngineeringThe University of BirminghamEdgbaston, BirminghamUK

Personalised recommendations