Distributed Restoration in Optical Networks using Feed-forward Neural Networks

Original Article

Abstract.

A new method is proposed for determining protection paths in an optical network where users have different characteristics in terms of reliability needs and security restrictions. Survivability is achieved by distributed mesh protection. Over the preplanned primary and backup capacity, optimal routing and wavelength assignment is carried out. In case of a network failure, protection routes and optimum flow values on these protection routes are extracted from a previously trained feed-forward neural network which is distributed over the optical data communications network.

Keywords

Optical switching Wavelength routing Restoration Neural networks Optical cross-connects Wavelength division multiplexing 

References

  1. 1.
    Ghani, N., Dixit, S., Wang, T.S. 2000On IP over WDM IntegrationIEEE Commun. Magaz.387284CrossRefGoogle Scholar
  2. 2.
    Iraschko, R., Grover, W.D. 2000A highly efficient path-restoration protocol for management of optical network transport integrityIEEE J. Selected Areas Commun.18779794CrossRefGoogle Scholar
  3. 3.
    Chujo T. et al.: The design and simulation of an intelligent transport network with distributed control. Proceedings of Network Operations Management Symposium’90 vol. 11(4). San Diego, CA, USA (1990)Google Scholar
  4. 4.
    Iraschko, R., MacGregor, M.H., Grover, W.D.: Optimal capacity placement for path restoration in mesh survivable networks. Proceedings of IEEE International Conference on Communication’96, vol. 1, pp. 1568–1574. Dallas, TX, USA (1996)Google Scholar
  5. 5.
    Murakami, K., Kim, H.S. 1998Optimal capacity and flow assignment for self-healing ATM networks based on line and end-to-end restorationIEEE/ACM Transac. Netw.6207221CrossRefGoogle Scholar
  6. 6.
    Sakauchi, H., Nishimura, Y., Hasegawa S.: A self-healing network with an economical spare channel assignment. Proceeding of IEEE Globecom’90, (San Diego, CA, USA (1990) pp. 438–443Google Scholar
  7. 7.
    Doshi, B.T., Dravida, S., Harshavardana, P., Hauser, O., Wang, Y. 1999Optical network design and restorationBell Labs Tech. J.45884CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Tipper, D.: Multilayer network survivability models and application. http://citeseer.nj.nec.com/540678.html.Google Scholar
  9. 9.
    Basbugoglu, O., Bilgen, S.: Distributed routing and wavelength assignment in WDM Networks. Ph.D. thesis, Graduate School of Natural Applied Sciences of Middle East Technical University, Ankara, Turkey (2000).Google Scholar
  10. 10.
    Irachko, R., McGregor, M.H. 1998Optimal capacity placement for path restoration in STN or ATM mesh survivable networksIEE/ACM Transact. Netw.6325336CrossRefGoogle Scholar
  11. 11.
    Austin, G.P., Doshi, B.T., Hunt, C.J., Nagarajan, R., Qureshi, M.A. 2001Fast, scalable and distributed restoration in general mesh optical networksBell Labs Tech. J.66781CrossRefGoogle Scholar
  12. 12.
    Battiti, R., Tecchiolli, G. 1995Training neural nets with the reactive tabu searchIEEE Transact. Neural Netw.611851200CrossRefGoogle Scholar
  13. 13.
    Schiffmann, W., Joost, M. 1998Speeding up backpropagation algorithms by using cross-entropy combined with pattern normalizationInt. J. Uncertain. Fuzziness Knowledge Based Syst.6117126CrossRefMATHGoogle Scholar
  14. 14.
    Berthold, M.R., Sudweeks, F., Newton, S., Coyne, R.: Clustering on the net: applying an autoassociative neural network to computer-mediated discussions. http://jcmc.huji.ac.il/vol2/issue4/berthold.html#Berthold97Google Scholar
  15. 15.
    Russel, S.J., Norvig, P.: Artificial Intelligence A Modern Approach. Prentice Hall, NJ, (1995)Google Scholar
  16. 16.
    Peterson, C.: Combinatorial optimization with feedback artificial neural networks. Proceedings of ICANN 1995 International Conference on Artificial Neural Networks. pp. 260–270. (Paris, France (1995)Google Scholar
  17. 17.
    Yao, X. 1992Finding approximate solutions to NP-Hard problems by neural networks is hard, InfProcess. Lett.419398MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen, M.S.: Analysis and design of multi layer perceptron using polynomial basisfunctions. Ph.D. thesis, University of Texas, Arlington (1996)Google Scholar
  19. 19.
    Basbugoglu, O., Bilgen, S.: A distributed minimal congestion routing algorithm for WDM networks. Proceedings of the International Symposium on Computer and Information Sciences XIV (ISCIS XIV), pp. 18–25. Izmir, Turkeys (1999)Google Scholar
  20. 20.
    MATLAB 6.0.0.88 Release 12 Help File (2000)Google Scholar
  21. 21.
    Bilgen, S., Koçyigit, A.: Statistically predictive optimal wavelength routing in all-optical networks. Proceedings of the International Symposium on Computer and Information Sciences XV (ISCIS XV), pp. 358–365. Istanbul, Turkey (2000)Google Scholar
  22. 22.
    Berthold M.R., Sudweeks F., Newton S., Coyne R. It makes sense:using an autoassociative neural network to explore typicality in computer-mediated discussions. Network and Netplay: Virtual Groups on the Internet pp. 191–219. (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.NATO Consultation, Command and Control AgencyThe HagueThe Netherlands
  2. 2.Department of Electrical and Electronics EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations