Advertisement

Magnesium Composite Materials for Nickel–Metal Hydride Batteries

  • Yu. V. VerbovytskyyEmail author
  • N. Yu. Zhurina
  • I. Yu. Zavaliy
  • T. M. Zasadnyy
Article
  • 3 Downloads

Amorphous MgNi and MgNi0.5Co0.5 composites were prepared by mechanical ball grinding in an argon atmosphere. The electrodes made of these composites are characterized by high electrochemical discharge capacity: 872 mA · h/g for MgNi and 309 mA · h/g for MgNi0.5Co0.5. The cyclic stability (S30) of the MgNi0.5Co0.5 electrode (42%) is somewhat higher compared to MgNi (26%). Reduction in the capacity of electrodes is associated with bulk and corrosion processes. The MgNi0.5Co0.5 electrode increases its capacity to a greater extent than MgNi after deep discharge.

Keywords

magnesium nickel composite electrochemical properties electrode materials 

References

  1. 1.
    I.Yu. Zavaliy, R.V. Denis, Yu.V. Verbovytskyy, V.V. Berezovets, and V.V. Shtender, “Magnesiumcontaining compounds, alloys, and composites as effective hydrogen absorbers,” in: V.V. Skorokhod and Yu.M. Solonin (eds.), Hydrogen in Alternative Energy and Novel Technologies [in Ukrainian], KIM, Kyiv (2015), pp. 158–166.Google Scholar
  2. 2.
    Y. Liu, L. Huang Cao, M. Gao, and H. Pan, “Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries,” J. Alloys Compd., 509, No. 3, 675–686 (2011).CrossRefGoogle Scholar
  3. 3.
    Yu.V. Verbovytsky and I.Yu. Zavaliy, “New metal-hydride electrode materials made of R1–xMgxNi3–4 alloys for chemical current sources,” Fiz. Khim. Mekh. Mater., No. 4, 7–18 (2015).Google Scholar
  4. 4.
    Yu.V. Verbovytskyy and I.Yu. Zavaliy, “New metal-hydride materials made of R2–xMgxNi4 alloys for chemical current sources,” Fiz. Khim. Mekh. Mater., No. 6, 7–18 (2016).Google Scholar
  5. 5.
    Y. Liu, H. Pan, M. Gao, and Q. Wang, “Advanced hydrogen storage alloys for Ni/MH rechargeable batteries,” J. Mater. Chem., 21, 4743–4755 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, B. Li, H. Ren, F. Hu, G. Zhang, and S. Guo, “Gaseous and electrochemical hydrogen storage kinetics of nanocrystalline Mg2Ni-type alloy prepared by rapid quenching,” J. Alloys Compd., 509, 5604–5610 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, Z. Liu, B. Li, Z. Ma, S. Guo, and X. Wang, “Structure and electrochemical performances of Mg2Ni1–xMnx (x = 0–0.4) electrode alloys prepared by melt spinning,” Electrochim. Acta, 56, 427–434 (2010).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, B. Li, H. Ren, Z. Ma, S. Guo, and X. Wang, “An electrochemical investigation of melt-spun nanocrystalline Mg20Ni10–xCux (x = 0–4) electrode alloys,” Int. J. Hydrogen Energy, 35, 2385–2392 (2010).CrossRefGoogle Scholar
  9. 9.
    T.Z. Si, D.M. Liu, and Q.A. Zhang, “Microstructure and hydrogen storage properties of the laser sintered Mg2Ni alloy,” Int. J. Hydrogen Energy, 32, 4912–4916 (2007).CrossRefGoogle Scholar
  10. 10.
    D.M. Liu, T.Z. Si, C.C. Wang, and Q.A. Zhang, “Phase component, microstructure and hydrogen storage properties of the laser sintered Mg–20 wt.% LaNi5 composite,” Scr. Mater., 57, 389–392 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Zou, H. Sun, X. Zeng, G. Ji, and W. Ding, “Preparation and hydrogen storage properties of Mg–Rich Mg–Ni ultrafine particles,” J. Nanomater., 2012, Special Issue, 1–8 (2012).Google Scholar
  12. 12.
    Yu. Verbovytskyy, J. Zhang, F. Cuevas, V. Paul–Boncour, and I. Zavaliy, “Synthesis and properties of the Mg2Ni0.5Co0.5H4.4 hydride,” J. Alloys Compd., 645, S408–S411 (2015).Google Scholar
  13. 13.
    Y.H. Zhang, H.P. Ren, B.W. Li, S.H. Guo, Z.G. Pang, and X.L. Wang, “Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10–xCox (x = 0–4) alloys prepared by melt spinning,” Int. J. Hydrogen Energy, 34, 8144–8151 (2009).Google Scholar
  14. 14.
    T.Z. Si, D.M. Liu, and Q.A. Zhang, “Microstructure and hydrogen storage properties of the laser sintered Mg2Ni alloy,” Int. J. Hydrogen Energy, 32, 4912–4916 (2007).Google Scholar
  15. 15.
    L. Sun, G.X. Wang, H.K. Liu, D.H. Bradhurst, and S.X. Dou, “Synthesis of nonstoichiometric amorphous Mg-based alloy electrodes by mechanical milling,” Electrochem. Solid State Lett., 3, 121–124 (2000).CrossRefGoogle Scholar
  16. 16.
    V. Ayyavu, N. Chandrasekar, and K. Sinnaeruvadi, “Can the degree of crystallinity of ball milled Mg2Ni intermetallic compound decide its electrochemical characteristics?” Part. Sci. Technol., 34, 134–142 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron–Guégan, and H. Zarrouk, “Structural and electrochemical properties of amorphous rich MgxNi100–x nanomaterial obtained by mechanical alloying,” J. Alloys Compd., 356–357, 557–561 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Anik, “Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying,” J. Alloys Compd., 491, 565–570 (2010).CrossRefGoogle Scholar
  19. 19.
    L. Sun, G.X. Wang, H.K. Liu, D.H. Bradhurst, and S.X. Dou, “Synthesis of nonstoichiometric amorphous Mg-based alloy electrodes by mechanical milling,” Electrochem. Solid State Lett., 3, 121–124 (2000).CrossRefGoogle Scholar
  20. 20.
    C. Iwakura, H. Inoue, S.G. Zhang, and S. Nohara, “Hydriding and electrochemical characteristics of a homogeneous amorphous Mg2Ni–Ni composite,” J. Alloys Compd., 270, 142–144 (1998).CrossRefGoogle Scholar
  21. 21.
    T. Kohno and M. Kanda, “Effect of partial substitution on hydrogen storage properties of Mg2Ni alloy,” J. Electrochem. Soc., 144, No. 7, 2384–2388 (1997).CrossRefGoogle Scholar
  22. 22.
    F.X. Wang, X.P. Gao, Z.W. Lu, S.H. Ye, J.Q. Qu, F. Wu, H.T. Yuan, and D.Y. Song, “Electrochemical properties of Mg-based alloys containing carbon nanotubes,” J. Alloys Compd., 370, 326–330 (2004).CrossRefGoogle Scholar
  23. 23.
    C. Rongeat, M.-H. Grosjean, S. Ruggeri, M. Dehmas, S. Bourlot, S. Marcotte, and L. Roué, “Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni–MH batteries,” J. Power Sources, 158, 747–753 (2006).CrossRefGoogle Scholar
  24. 24.
    J.F.R. de Castro, S.F. Santos, F.R. Nikkuni, T.T. Ishikawa, and E.A. Ticianelli, “Structural and electrochemical characteristics of Mg(55–x)TixNi(45–y)Pty metal hydride electrodes,” J. Alloys Compd., 498, 57–61 (2010).Google Scholar
  25. 25.
    D. Wu, G. Liang, L. Li, and H. Wu, “Microstructural investigation of electrochemical hydrogen storage in amorphous Mg–Ni–La alloy,” Mater. Sci. Eng. B, 175, 248–252 (2010).CrossRefGoogle Scholar
  26. 26.
    M. Anik, G. Özdemir, N. Küçükdeveci, and B. Baksan, “Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy,” Int. J. Hydrogen Energy, 36, 1568–1577 (2011).CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, B. Li, H. Ren, X. Ding, X. Liu, and L. Chen, “An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1−xCox (x = 0–0.4) alloy prepared by melt spinning,” J. Alloys Compd., 509, 2808–2814 (2011).CrossRefGoogle Scholar
  28. 28.
    J. Zhang, Y. Zhu, Y. Wang, Z. Pu, and L. Li, “Electrochemical hydrogen storage properties of Mg2–xAlxNi (x = 0, 0.3, 0.5, 0.7) prepared by hydriding combustion synthesis and mechanical milling,” Int. J. Hydrogen Energy, 37, 18140–18147 (2012).CrossRefGoogle Scholar
  29. 29.
    S.F. Santos, J.F.R. de Castro, and E.A. Ticianelli, “Microstructures and electrode performances of Mg50Ni(50–x)Pdx alloys,” Cent. Eur. J. Chem., 11, No. 4, 485–491 (2013).Google Scholar
  30. 30.
    A. Etiemble, S. Rousselot, W. Guo, H. Idrissi, and L. Roué, “Influence of Pd addition on the electrochemical performance of Mg–Ni–Ti–Al-based metal hydride for Ni–MH batteries,” Int. J. Hydrogen Energy, 38, 7169–7177 (2013).CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, C. Li, Y. Cai, F. Hu, Z. Liu, and S. Guo, “Highly improved electrochemical hydrogen storage performances of the Nd–Cu-added Mg2Ni-type alloys by melt spinning,” J. Alloys Compd., 584, 81–86 (2014).CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, T. Zhai, T. Yang, Z. Yuan, Z. Hou, and Y. Qi, “Electrochemical hydrogen–storage performance of Mg20–xYxNi10 (x = 0–4) alloys prepared by mechanical milling,” J. Appl. Electrochem., 45, No. 9, 931–941 (2015).CrossRefGoogle Scholar
  33. 33.
    H. Shao and X. Li, “Effect of nanostructure and partial substitution on gas absorption and electrochemical properties in Mg2Ni-based alloys,” J. Alloys Compd., 667, 191–197 (2016).CrossRefGoogle Scholar
  34. 34.
    S.F. Santos, J.F.R. de Castro, T.T. Ishikawa, and E.A. Ticianelli, “Effect of transition metal additions on the electrochemical properties of a MgNi-based alloy,” J. Alloys Compd., 434, 756–759 (2007).CrossRefGoogle Scholar
  35. 35.
    R. Ohara, C.-H. Lan, and C.-S. Hwang, “Electrochemical and structural characterization of electroless nickel coating on Mg2Ni hydrogen storage alloy,” J. Alloys Compd., 580, S368–S372 (2013).CrossRefGoogle Scholar
  36. 36.
    L.Z. Ouyang, H. Wang, C.H. Peng, M.Q. Zeng, C.Y. Chung, and M. Zhu, “Formation of MgCNi3 and Mg–Ni amorphous mixture by mechanical alloying of Mg–Ni–C system,” Mater. Lett., 58, 2203–2206 (2004).CrossRefGoogle Scholar
  37. 37.
    F.X. Wang, X.P. Gao, Z.W. Lu, S.H. Ye, J.Q. Qu, F. Wu, H.T. Yuan, and D.Y. Song, “Electrochemical properties of Mg–based alloys containing carbon nanotubes,” J. Alloys Compd., 370, 326–330 (2004).CrossRefGoogle Scholar
  38. 38.
    L.W. Huang, O. Elkedim, M. Nowak, M. Jurczyk, R. Chassagnon, and D.W. Meng, “Synergistic effects of multiwalled carbon nanotubes and Al on the electrochemical hydrogen storage properties of Mg2Ni–type alloy prepared by mechanical alloying,” Int. J. Hydrogen Energy, 37, 1538–1545 (2012).CrossRefGoogle Scholar
  39. 39.
    H.B. Yang, J.T. Ji, H. Sun, H.T. Yuan, Z.X. Zhou, and Y.S. Zhang, “Properties of the ternary Mg2Ni0.75Co0.25 hydrogen storage alloy after fluorination treatment,” J. Electrochem. Soc., 148, A554–A558 (2001).CrossRefGoogle Scholar
  40. 40.
    Z. Liu, Z. Hou, F. Ruan, and J. Zhang, “Effect of LiBr addition on the electrochemical performance of La2Mg17/Ni composites prepared by ball milling,” J. Alloys Compd., 624, 68–73 (2015).CrossRefGoogle Scholar
  41. 41.
    X. Hou, R. Hu, T. Zhang, H. Kou, and J. Li, “Hydrogenation thermodynamics of melt–spun magnesium rich Mg–Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3,” J. Power Sources, 306, 437–447 (2016).CrossRefGoogle Scholar
  42. 42.
    Z. Pu, “Kinetics and electrochemical characteristics of Mg2NiH4–x wt.% MmNi3.8Co0.75Mn0.4Al0.2 (x = 5, 10, 20, 40) composites for Ni–MH battery,” Int. J. Hydrogen Energy, 39, 3887–3894 (2014).Google Scholar
  43. 43.
    G. He, L. Jiao, H. Yuan, Y. Zhang, and Y. Wang, “Preparation and electrochemical properties of MgNi–MB (M = Co, Ti) composite alloys,” J. Alloys Compd., 450, 375–379 (2008).CrossRefGoogle Scholar
  44. 44.
    H. Huang, K. Huang, D. Chen, S. Liu, and S. Zhuang, “The electrochemical properties of MgNi–x wt.% TiNi0.56Co0.44 (x = 0, 10, 30, 50) composite alloys,” J. Mater. Sci., 45, 1123–1129 (2010).CrossRefGoogle Scholar
  45. 45.
    M. Li, Y. Zhu, C. Yang, J. Zhang, W. Chen, and L. Li, “Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel,” Int. J. Hydrogen Energy, 40, 13949–13956 (2015).CrossRefGoogle Scholar
  46. 46.
    W. Chen, Y. Zhu, C. Yang, J. Zhang, M. Li, and L. Li, “Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel,” J. Power Sources, 280, 132–140 (2015).CrossRefGoogle Scholar
  47. 47.
    I.Yu. Zavaliy, Yu.V. Verbovytskyy, A.R. Kytsya, P.Yu. Zavaliy, and P.Ya. Lyutyy, “Influence of nanoadditives on hydrogenation properties of R–Mg–Ni-based composites,” in: Ukr. Conf. with International Participation, Chemistry, Physics and Technology of Surface, Kyiv, Ukraine, May 24–25 (2017), p. 175.Google Scholar
  48. 48.
    W. Kraus and G. Nolze, PowderCell for Windows, Federal Institute for Materials Research and Testing, Berlin (1999).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Verbovytskyy
    • 1
    Email author
  • N. Yu. Zhurina
    • 1
  • I. Yu. Zavaliy
    • 1
  • T. M. Zasadnyy
    • 1
  1. 1.Karpenko Physicomechanical InstituteNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations