Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 3–4, pp 221–228 | Cite as

Features of High-Temperature Oxidation of High-Entropy AlCrFe3CoNiCu Alloy

  • M. V. Karpets
  • V. F. Gorban
  • O. A. RokitskaEmail author
  • M. O. Krapivka
  • E. S. Makarenko
  • A. V. Samelyuk
PHYSICOCHEMICAL MATERIALS RESEARCH
  • 59 Downloads

The paper examines how the scale forms on the AlCrFe3CoNiCu alloy when oxidized at 900°C for 50 h and how high-temperature annealing influences the structure and phase transformations and mechanical properties of the alloy matrix. It is found that long-term annealing at 900°C leads to the formation of a three-phase alloy consisting of a solid solution with a BCC lattice of B2 structural type and two solid solutions with FCC crystal lattices (one contains a higher amount of Ni and Co, and the other is a solid solution enriched with 66 wt.% Cu). A two-phase scale containing Al2O3 and CuO forms on the alloy in the oxidation process. Indentation method has shown that the mechanical properties of the AlCrFe3CoNiCu alloy remain stable after long-term high-temperature annealing.

Keyword

high-entropy alloy oxidation resistance scale oxide solid solution σ-phase hardness microstructure 

References

  1. 1.
    J. W. Yeh, Y. L. Chen, and S. J. Lin, “High-entropy alloys—a new era of exploitation,” Mater. Sci. Forum, 560, 1–9 (2007).CrossRefGoogle Scholar
  2. 2.
    K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys,” Acta Mater., 61, No. 13, 4887–4897 (2013).CrossRefGoogle Scholar
  3. 3.
    Y. J. Zhou, G. Y. Zhan, F. J. Wang, et al., “Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0.5 solid solution alloy,” J. Alloys Compd., 466, 201–204 (2008).CrossRefGoogle Scholar
  4. 4.
    Y. Y. Chen, T. Duval, U. D. Hung, et al., “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel,” Corros. Sci., No. 47, 2257–2279 (2005).Google Scholar
  5. 5.
    Y. S. Huang, L. Chen, H. W. Lui, et al., “Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy,” Mater. Sci. Eng. A, 457, 77–83 (2007).CrossRefGoogle Scholar
  6. 6.
    O. N. Senkov, S. V. Senkova, D. M. Dimiduk, et al., “Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy,” J. Mater. Sci., No. 47, 6522–6534 (2012).Google Scholar
  7. 7.
    C. M. Liu, H. M. Wang, S. Q. Zhang, et al., “Microstructure and oxidation behavior of new refractory high entropy alloys,” J. Alloys Compd., 583, 162–169 (2014).CrossRefGoogle Scholar
  8. 8.
    J. C. Jiang and X. Y. Luo, “High temperature oxidation behavior of AlCuTiFeNiCr high-entropy alloy,” Adv. Mater. Res., 652, 1115–1118 (2013).CrossRefGoogle Scholar
  9. 9.
    S. A. Firstov, V. F. Gorban, N. A. Krapivka, et al., “Structurization of dendrites in as-cast multicomponent high-entropy single-phase BCC alloys,” Sovr. Probl. Fiz. Materialoved., No. 21, 3–21 (2012).Google Scholar
  10. 10.
    M. Ren, B. S. Li, and H. Z. Fu, “Formation condition of solid solution type high-entropy alloy,” Trans. Nonferrous Met. Soc. China, No. 4, 991–995 (2013).Google Scholar
  11. 11.
    Y. Zhou, Y. Zhang, T. Kim, and G. Chen, “Microstructure characterizations and strengthening mechanism of multiprincipal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties,” Mater. Lett., 62, No. 17–18, 2673–2676 (2008).CrossRefGoogle Scholar
  12. 12.
    S. A. Firstov, V. F. Gorban, N. A. Krapivka, and É. P. Pechkovsky, “New class of materials—high-entropy alloys and coatings: proceedings,” Vest. Tomsk. Gos. Univ., 18, No. 4, 1938–1940 (2013).Google Scholar
  13. 13.
    T. T. Shun, L. Y. Chang, and M. H. Shiu, “Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys,” Mater. Charact., 70, 63–67 (2012).CrossRefGoogle Scholar
  14. 14.
    G. U. Sheng and C. T. Liu, “Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci. Mater. Int., No. 6, 433–446 (2011).Google Scholar
  15. 15.
    S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys,” J. Appl. Phys., 109, No. 10, 103505-1–103505-5 (2011).CrossRefGoogle Scholar
  16. 16.
    X. Yang, Y. Zhang, and P. K. Liaw, “Microstructure and compressive properties of NbTiVTaAlx high entropy alloys,” Procedia Eng., No. 36, 292–298 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Mrowec and T. Werber, Modern Heat-Resistant Materials [in Polish], WNT, Warsaw (1982).Google Scholar
  18. 18.
    R. F. Voitovich, “Oxidation of iron and copper alloys with aluminum,” Zh. Prikl. Khim., 38, No. 4, 946–949 (1965).Google Scholar
  19. 19.
    S. A. Firstov, V. F. Gorban, É. P. Pechkovsky, and N. A. Mameka, “Indentation equation,” Dop. Nats. Akad. Nauk Ukrainy, No. 12, 100–106 (2007).Google Scholar
  20. 20.
    V. F. Gorban and É. P. Pechkovsky, “Instrumented indentation for determining the structural state of materials,” Powder Metall. Met. Ceram., 49, No. 7–8, 424–429 (2010).CrossRefGoogle Scholar
  21. 21.
    J.-W. Yeh, S.-K. Chen, S.-J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, No. 5, 299–303 (2004).CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., 61, 1–93 (2014).CrossRefGoogle Scholar
  23. 23.
    M. V. Karpets, O. S. Makarenko, V. F. Gorban, et al., “High-temperature phase transformations in multicomponent FeCoCrNiVAl alloy,” Powder Metall. Met. Ceram., 55, No. 5–6, 361–368 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Karpets
    • 1
  • V. F. Gorban
    • 1
  • O. A. Rokitska
    • 1
    Email author
  • M. O. Krapivka
    • 1
  • E. S. Makarenko
    • 1
  • A. V. Samelyuk
    • 1
  1. 1.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations