Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 3–4, pp 200–208 | Cite as

Effect of Molybdenum Additions on the Structure of TiB2–(Fe–Mo) Composite Materials

  • M. S. StorozhenkoEmail author
  • O. P. Umanskyi
  • O. U. Stelmach
  • Ye. P. Pukhachevska
  • O. D. Kostenko
  • O. A. Bondarenko
REFRACTORY AND CERAMIC MATERIALS
  • 49 Downloads

To examine the effect of molybdenum additions on the structurization of TiB2–(Fe–Mo) composite materials, differential thermal analysis of the samples with 8, 13, and 20 wt.% Mo in the metallic phase was carried out and their structure was examined after sintering. It is shown that molybdenum is an active component in the systems with 8 and 13 wt.% Mo and promotes the formation of complex Mo2FeB2 borides, which additionally strengthen the material. When the molybdenum content of the metallic phase increases to 20 wt.%, boride compounds intensively form in the system, making the composite material brittle.

Keywords

composite materials structure iron molybdenum titanium diboride 

References

  1. 1.
    G. V. Samsonov and K. I. Portnoy, Alloys Based on Refractory Compounds [in Russian], Obrongiz, Moscow (1961), p. 304.Google Scholar
  2. 2.
    V. N. Antsiferov, L. D. Sirotenko, A. M. Khanov, and I. V. Yakovlev, Composite Materials and Structures Based on Titanium and Its Compounds [in Russian], Izd. Inst. Gidrodin. SO RAN, Novosibirsk (2001), p. 370.Google Scholar
  3. 3.
    G. V. Samsonov and I. M. Vinnitsky, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  4. 4.
    Koge Ginjutsu Inte, Japanese Patent 50-13128, Method of Producing Sintered Cutting Tools from Titanium Boride [Russian translation], IPC C22C 29/00, publ. July 13 (1975).Google Scholar
  5. 5.
    I. Noboru, N. Katsuhiro, and I. Nori, Japanese Patent 55-145145, Titanium Boride Solid Alloy [Russian translation], IPC C22C 29/00, publ. November 12 (1980).Google Scholar
  6. 6.
    I. Sanse, N. Katsuhiro, and I. Nori, Japanese Patent 56-43378, Superhard Titanium Boride Alloy [Russian translation], IPC C22C 29/00, publ. October 12 (1981).Google Scholar
  7. 7.
    Koge Ginjutsu Inte, Japanese Patent 56-44942, Method of Producing TiB2–Cr–Ni–P Material [Russian translation], IPC C22C 29/00, publ., October 22 (1981).Google Scholar
  8. 8.
    S. O. Firstov, A. S. Drachinsky, and O. G. Molar, Inventor’s Certificate No. 76060, Metal Ceramic Titanium Diboride Friction Material [in Russian], C22C29/00, publ. June 15 (2006), Bull. No. 6.Google Scholar
  9. 9.
    R. Gonzalez, M. G. Barandika, D. Ona, et al., “New binder phases for the consolidation of TiB2 hardmetals,” Mater. Sci. Eng., A216, 185–192 (1996).CrossRefGoogle Scholar
  10. 10.
    A. P. Umansky and A. D. Panasyuk, Inventor’s Certificate No. 1295771, Metal Ceramic Titanium Boride Material [in Russian], C22C29/14, publ. November 8 (1986).Google Scholar
  11. 11.
    A. D. Panasyuk, A. P. Umansky, V. P. Smirnov, and L. P. Isaeva, “Titanium diboride composite material with an iron–nickel binder,” in: Sintering and Hot Pressing of Materials Based on Refractory Compounds [in Russian], Inst. Probl. Materialoved. AN USSR, Kyiv (1986), pp. 75–82.Google Scholar
  12. 12.
    N. Wu, F. Xue, Q. Yang, et al., “Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering,” Ceram. Int., 43, 1394–1401 (2017).CrossRefGoogle Scholar
  13. 13.
    N. V. Bangaru, N. Thirumalai, J. R. Peterson, et al., “Erosion–corrosion-resistant titanium diboride cermets for high-temperature process applications,” Int. J. Appl. Ceram. Technol., No. 5, 597–609 (2008).Google Scholar
  14. 14.
    L. Cha, S. Lartigue-Korineka, M. Walls, and L. Mazerolles, “Interface structure and chemistry in a novel steelbased composite Fe–TiB2 obtained by eutectic solidification,” Acta Mater., No. 60 (18), 6382–6389 (2012).Google Scholar
  15. 15.
    X. Wang, H. Shun, Ch. Li, et al, “The performances of TiB2-contained iron-based coatings at high temperature,” Surf. Coat. Technol., 201, 2500–2504 (2006).CrossRefGoogle Scholar
  16. 16.
    P. Zhang, X. Wang, L. Guo, et al., “Characterization of in situ synthesized TiB2 reinforcements in ironbased composite coating,” Appl. Surf. Sci., 258, 1592–1598 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Lee, J. Y. Jung, E.-S. Lee, et al., “Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming,” Mater. Sci. Eng., A277, 274–283 (2000).CrossRefGoogle Scholar
  18. 18.
    J. Dong, Y. Zhou, Y. W. Shi, and B. H. Chang, “Formation of a TiB2-reinforced copper-based composite by mechanical alloying and hot pressing,” Metall. Mater. Trans., 33A, 1275–1280 (2002).CrossRefGoogle Scholar
  19. 19.
    Ch. Xiao, W. Hong-tao, J. Gang-chang, et al., “Influence of binder phase content on the microstructure and properties of HVOF-sprayed TiB2–Ni coatings,” J. Mater. Eng., No. 3, 34–40 (2014).Google Scholar
  20. 20.
    H. Wang, H. Li, H. Zhu, et al., “A comparative study of plasma sprayed TiB2–NiCr and Cr3C2–NiCr composite coatings,” Mater. Lett., 153, 110–113 (2015).CrossRefGoogle Scholar
  21. 21.
    A. J. Horlock, D. G. McCartney, P. H. Shipway, and J. V. Wood, “Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behavior,” Mater. Sci. Eng., A336, 88–98 (2002).CrossRefGoogle Scholar
  22. 22.
    A. P. Umansky, I. Hussainova, M. S. Storozhenko, et al., “Structure, phase composition, and wear mechanisms of plasma-sprayed NiCrSiB–20 wt.% TiB2 coatings,” Powder Metall. Met. Ceram., 53, Nos. 11–12, 663–671 (2015).Google Scholar
  23. 23.
    O. Umanskyi, M. Storozhenko, I. Hussainova, et al., “Effect of TiB2 additives on wear behavior of NiCrSiB-based plasma sprayed coatings,” Mater. Sci., 22, 15–19 (2016).Google Scholar
  24. 24.
    A. P. Umansky, A. E. Terentiev, M. S. Storozhenko, and I. S. Martsenyuk, “Effect of fine TiB2 additions on the structure and phase composition of composite powders and coatings in the (Ni–Cr–Si–B)–TiB2 system,” in: Scientific Papers, Lutsk (2013), Issue 41, Part 2, pp. 213–221.Google Scholar
  25. 25.
    O. Umanskyi, O. Poliarus, M. Ukrainets, and M. Antonov, “Physical–chemical interaction in NiAI–MeB2 systems intended for tribological applications,” Weld. J., 94, 225–230 (2015).Google Scholar
  26. 26.
    O. Umanskyi, O. Poliarus, M. Ukrainets, and I. Martsenyuk, “Effect of ZrB2, CrB2 and TiB2 additives on the tribological characteristics of NiAl-based gas-thermal coatings,” Key Eng. Mater., 604, 20–23 (2014).CrossRefGoogle Scholar
  27. 27.
    A. Hirose, M. Hasegawa, and K. F. Kobayashi, “Microstructures and mechanical properties of TiB2 particle reinforced TiAl composites by plasma arc melting process,” Mater. Sci. Eng., A239–240, 46–54 (1997).CrossRefGoogle Scholar
  28. 28.
    V. N. Eremenko and Yu. V. Naidich, Wetting of Refractory Compounds with Liquid Metals [in Ukrainian], Vyd. Akad. Nauk URSR, Lviv (1958), p. 60.Google Scholar
  29. 29.
    A. Panasyuk and A. Umansky, “Physicochemical principles of formation of composite materials based on titanium diboride,” J. Less-Common Met., 117, 335–339 (1986).CrossRefGoogle Scholar
  30. 30.
    I. M. Spiridonova, A. D. Panasyuk, E. V. Sukhovaya, and A. P. Umansky, Stability of Composite Materials [in Russian], Svidler A. L., Dnepropetrovsk (2011), p. 244.Google Scholar
  31. 31.
    A. P. Umansky, V. P. Konoval, A. D. Panasyuk, et al., “Plasma coatings of TiCrC–FeCr composite powder alloys: structure and properties,” Powder Metall. Met. Ceram., 46, No. 3–4, 133–138 (2007).CrossRefGoogle Scholar
  32. 32.
    V. G. Samsonov, A. D. Panasyuk, and M. S. Borovikova, “Contact relation between refractory compounds and liquid metals,” Powder Metall. Met. Ceram., 12, No. 6, 476–480 (1973).Google Scholar
  33. 33.
    G. V. Samsonov, A. D. Panasyuk, G. V. Kozina, and M. S. Borovikova, “Effect of boron, carbon, molybdenum, and chromium additions on interface interaction in the refractory compound–liquid alloy systems,” in: Physical Chemistry of Melt Surfaces and Soldering [in Russian], Metsniereba, Tbilisi (1977), pp. 183–188.Google Scholar
  34. 34.
    A. P. Umansky, A. D. Panasyuk, N. N. Sereda, et al., “Studying the interface interaction in the (TiC–Mo2C)–(Ni-Mo) systems with microprobe analysis,” Adgez. Raspl. Paika Mater., Issue 26, 41–45 (1991).Google Scholar
  35. 35.
    M. S. Storozhenko, “Effect of molybdenum additions on the structurization of Fe–Mo alloys and contact interaction in the TiB2–(Fe–Mo) systems,” Powder Metall. Met. Ceram., 55, No. 9–10, 617–624 (2017).CrossRefGoogle Scholar
  36. 36.
    A. P. Umansky, M. S. Storozhenko, and V. V. Akopyan, “Studying the contact interaction of TiB2 with Fe–Mo alloys,” Adgez. Raspl. Paika Mater., Issue 44, 38–45 (2011).Google Scholar
  37. 37.
    A. Panasyuk, O. Umanskyi, M. Storozhenko, and V. Akopyan, “Development of TiB2-based cermets with Fe–Mo binder,” Key Eng. Mater., 527, 9–13 (2013).CrossRefGoogle Scholar
  38. 38.
    E. I. Gladyshevsky, T. F. Fedorov, Yu. B. Kuzma, and Z. V. Skolozdra, “Isothermal section of the molybdenum–iron–boron system,” Powder Metall. Met. Ceram., 5, No. 4, 305–309 (1966).Google Scholar
  39. 39.
    K. Takagi, “Development and application of high strength ternary boride base cermets,” J. Solid State Chem., No. 9, 2809–2818 (2006).Google Scholar
  40. 40.
    O. A. Bannykh, N. P. Lyakishev, and L. L. Rokhlin, Phase Diagrams of Binary Metallic Systems: Handbook [in Russian], in 3 Vols., Mashinostroenie, Moscow (1996), Vol. 2, p. 992.Google Scholar
  41. 41.
    V. V. Chernienko, V. A. Grametski, and E. G. Pavlyshko, “Multilayer bulk boriding of iron-based composite materials,” Tr. Odess. Politekh. Univ., No. 1 (21), 1–3 (2004).Google Scholar
  42. 42.
    H. Yu, W. Liu, and Y. Zheng, “Effect of carbon content on the microstructure and mechanical properties of Mo2FeB2 based cermets,” Int. J. Refract. Met. Hard Mater., No. 29, 724–728 (2011).Google Scholar
  43. 43.
    H. Yu, W. Liu, and Y. Zheng, “Microstructure and mechanical properties of liquid phase sintered Mo2FeB2 based cermets,” Mater. Des., No. 6, 3521–3525 (2011).Google Scholar
  44. 44.
    Q. F. Wang, Y. J. Pan, B. Hu, and L. Zhou, “Effects of alloys on microstructure and properties of Mo2FeB2-based cermets,” Adv. Mater. Res., 399–401, 399–402 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Storozhenko
    • 1
    Email author
  • O. P. Umanskyi
    • 1
  • O. U. Stelmach
    • 2
  • Ye. P. Pukhachevska
    • 2
  • O. D. Kostenko
    • 1
  • O. A. Bondarenko
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Aviation UniversityKyivUkraine

Personalised recommendations