Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 3–4, pp 175–181 | Cite as

Structure and Mechanical and Tribotechnical Properties of Iron–High-Carbon Ferrochrome Doped with Ni3B Additions

  • V. A. Maslyuk
  • E. S. KaraimchukEmail author
  • M. I. Podoprygora
  • V. T. Varchenko
  • I. A. Sytnyk
SINTERED METALS AND ALLOYS
  • 23 Downloads

The production conditions and mechanical and tribotechnical properties of iron–high-carbon ferrochrome FKh800 materials doped with nickel boride have been studied. It is shown that Ni3B additions promote the formation of a multiphase microheterogeneous matrix-reinforced structure consisting of chromium steel and solid inclusions of complex chromium–iron carbides such as Me7C3 and Me23C6. When the doping content increases from 3.5 to 7.0 wt.%, complex Fe–Cr carbides and carboborides form, decreasing the hardness and bending strength and increasing the abrasive wear resistance of the base material from 5.0 to 12.2 km/mm. The Fe–35% FKh800 materials containing 5–7 wt.% Ni3B are found to be promising as they combine acceptable mechanical properties and improved abrasive wear resistance.

Keywords

powder materials composite wear resistance iron nickel boride sintering hardness 

References

  1. 1.
    I. D. Radomyselsky, G. G. Serdyuk, and N. I. Shcherban, Structural Powder Materials [in Russian], Tekhnika, Kyiv (1985), p. 152.Google Scholar
  2. 2.
    I. M. Fedorchenko, I. N. Frantsevich, I. D. Radomyselsky, et al., Powder Metallurgy. Materials, Technology, Properties, and Applications: Handbook [in Russian], Naukova Dumka, Kyiv (1985), p. 624.Google Scholar
  3. 3.
    V. A. Maslyuk, A. A. Bondar, V. B. Kuras’, et al., “Structure and properties of iron–high-carbon ferrochrome powder composites,” Powder Metall. Met. Ceram., 52, No. 5–6, 291–297 (2013).CrossRefGoogle Scholar
  4. 4.
    S. M. Vinarov (ed.), V. A. Mchedlishvili, and V. V. Khovrin, Boron, Calcium, Niobium, and Zirconium in Cast Iron and Steel [Russian translation], Metallurgizdat, Moscow (1971), p. 459.Google Scholar
  5. 5.
    S. S. Ermakov and N. F. Vyaznikov, Powder Steels and Parts [in Russian], 4th ed., Mashinostroenie, Leningrad (1990), p. 319.Google Scholar
  6. 6.
    V. A. Maslyuk, Y. A. Sytnik, M. I. Podoprygora, and R. V. Yakovenko, “The effect of chromium steels and nickel boride additives on the structure and properties of iron–high-carbon ferrochrome FKh800 powder composites,” Powder Metall. Met. Ceram., 54, No. 5–6, 292–297 (2015).CrossRefGoogle Scholar
  7. 7.
    ISO 4498-1:1990. Sintered Metal Materials, Excluding Hardmetals—Determination of Apparent Hardness. Part 1. Materials of Essentially Uniform Section Hardness, ed. 1990-08-2.Google Scholar
  8. 8.
    ISO 3327:2009. Hardmetals—Determination of Transverse Rupture Strength, ed. 2009-05-15.Google Scholar
  9. 9.
    G. A. Baglyuk, S. G. Napara-Volgina, L. N. Orlova, et al., “Production of boron-containing powder steels using master alloys and boron carbide,” Powder Metall. Met. Ceram., 49, No. 11–12, 618–654 (2011).Google Scholar
  10. 10.
    Yu. S. Borisov, V. E. Oliker, E. A. Astakhov, et al., “Structure and properties of gas-thermal coatings of Fe–B–C and Fe–Ti–B–C alloys,” Powder Metall. Met. Ceram., 26, No. 4, 313–318 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Maslyuk
    • 1
  • E. S. Karaimchuk
    • 1
    Email author
  • M. I. Podoprygora
    • 1
  • V. T. Varchenko
    • 1
  • I. A. Sytnyk
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations