Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 3–4, pp 161–174 | Cite as

Hardening in the Transition to Nanocrystalline State in Pure Metals and Solid Solutions (Ultimate Hardening)

  • S. A. Firstov
  • T. G. RogulEmail author
  • O. A. Shut
NANOSTRUCTURED MATERIALS
  • 34 Downloads

The state of the grain boundaries and the solid solution is analyzed for influence on the yield stress over a wide range of grain sizes for pure metals, low-doped alloys, and multicomponent solid solutions, including high-entropy alloys. A generalized equation is derived using the averaging integrals to describe the yield stress and hardness normalized to Young’s modulus versus the grain size. The potential to reach the maximum hardening for nanostructured materials through the use of grain-boundary engineering is considered. The concept of ‘useful’ impurities intended to bring the strength of such materials to the level comparable with the maximum (theoretically) possible one (E/2π–E/30) is proposed.

Keywords

yield stress grain size grain boundaries solid solution metals low-doped alloys 

References

  1. 1.
    A. H. Chokshi and A. Rosen, “On the validity of the Hall–Petch relationship in nanocrystalline materials,” Scr. Metall. Mater., 23, 1679–1683 (1989).CrossRefGoogle Scholar
  2. 2.
    V. A. Pozdnyakov and M. A. Glezer, “On anomalies of the Hall–Petch relation for nanomaterials,” Pis’ma Zh. Exp. Teor. Fiz., 21, No. 1, 31–36 (1995).Google Scholar
  3. 3.
    H. Conrad and J. Narayan, “On the grain size softening in nanocrystalline materials,” Scr. Mater., 42, No. 11, 1025–1030 (2000).CrossRefGoogle Scholar
  4. 4.
    R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials. II. Mechanical and physical properties,” Fiz. Met. Metalloved., 89, No. 1, 91–112 (2000).Google Scholar
  5. 5.
    C. Carlton and P. J. Ferreira, “What is behind the inverse Hall–Petch behavior in nanocrystalline materials,” Acta Mater., 55, 3749–3756 (2007).CrossRefGoogle Scholar
  6. 6.
    G. A. Malygin, “Ductility and strength of micro- and nanocrystalline materials (overview),” Fiz. Tverd. Tela, 49, No. 6, 961–982 (2007).Google Scholar
  7. 7.
    U. F. Kocks, “The relation between polycrystal deformation and single crystal deformation,” Metall. Trans., 1, No. 5, 1121–1143 (1970).CrossRefGoogle Scholar
  8. 8.
    G. Langford and M. Cohen, “Strain hardening of iron by severe plastic deformation,” Trans. Am. Soc. Mech. Eng., 62, 623–638 (1969).Google Scholar
  9. 9.
    A. W. Thompson, “Substructure strengthening mechanisms,” Metall. Trans., 8A, No. 6, 833–842 (1977).CrossRefGoogle Scholar
  10. 10.
    S. A. Firstov, T. G. Rogul, and O. A. Shut, “Strengthening of polycrystals in transition from micro- to nanostructured state,” Fiz. Khim. Mekh. Mater., No. 6, 5–12 (2009).Google Scholar
  11. 11.
    S. A. Firstov, T. G. Rogul, and O. A. Shut, “Generalized dependence of yield stress on grain size,” Deform. Razrush. Mater., No. 1, 2–10 (2015).Google Scholar
  12. 12.
    S. A. Firstov, T. G. Rogul, and S. N. Dub, “Grain boundary engineering of nanostructured chromium films,” in: Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing (May 12–15, 2004, Kyiv, Ukraine), Springer (2005), pp. 225–232.Google Scholar
  13. 13.
    S. O. Firstov, T. G. Rogul, V. L. Svechnikov, et al., “Concept of useful impurities and mechanical properties of chromium and molybdenum films,” Fiz. Khim. Mekh. Mater., 42, No. 1, 113–119 (2006).Google Scholar
  14. 14.
    O. E. Hall, “Deformation and ageing of mild steel,” Proc. Phys. Soc. London, Sect. B, 64, No. 1, 747–753 (1951).CrossRefGoogle Scholar
  15. 15.
    N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., 174, 25–28 (1953).Google Scholar
  16. 16.
    H. Conrad, “Work-hardening model for the effect of grain size on the flow stress of metals,” in: J. J. Burke and V. Weiss (eds.), Ultrafine-Grain Metals, Syracuse University Press (1970).Google Scholar
  17. 17.
    G. Palumbo, U. Erb, and K. T. Aust, “Triple line disclination effects on the mechanical behavior of materials,” Scr. Metall. Mater., 24, 2347–2350 (1990).CrossRefGoogle Scholar
  18. 18.
    M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Work-Hardened Structure. Vol. 1. Nanocrystalline Materials [in Russian], Inst. Probl. Mashinostr. RAN, Saint Petersburg (2003), p. 194.Google Scholar
  19. 19.
    V. G. Gryaznov, M. Yu. Gutkin, A. E. Romanow, et al., “On the yield stress of nanocrystals,” J. Mater. Sci., 28, No. 16, 4359–4365 (1993).CrossRefGoogle Scholar
  20. 20.
    H. S. Kim, Y. Estrin, and M. B. Bush, “Plastic deformation behavior of fine-grained materials,” Acta Mater., 48, No. 2, 493–504 (2000).CrossRefGoogle Scholar
  21. 21.
    S. Takeuchi, “The mechanism of the inverse Hall–Petch relation of nanocrystals,” Scr. Mater., 44, 1483–1487 (2001).CrossRefGoogle Scholar
  22. 22.
    S. G. Zaichenko and A. M. Glezer, “Disclination mechanism of plastic deformation of nanocrystalline materials,” Fiz. Tverd. Tela, 39, No. 11, 2023–2028 (1997).Google Scholar
  23. 23.
    V. A. Pozdyankov, “Plastic deformation mechanisms and anomalies of the Hall–Petch relation for nanocrystalline materials,” Fiz. Met. Metalloved., 96, No. 1, 114–128 (2003).Google Scholar
  24. 24.
    M. P. Phaniraj, M. J. Prasad, and A. H. Chokshi, “Grain-size distribution effects in plastic flow and failure,” Mater. Sci. Eng. A, 463, 231–237 (2007).CrossRefGoogle Scholar
  25. 25.
    G. A. Malygin, “Effect of grain-size distribution on the strength and ductility of nanocrystalline materials,” Fiz. Tverd. Tela, 50, No. 6, 1013–1017 (2008).Google Scholar
  26. 26.
    X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, et al., “Formation mechanism of wide stacking faults in nanocrystalline Al,” Appl. Phys. Lett., 84, No. 17, 1–3 (2004).Google Scholar
  27. 27.
    H. Hahn and K. A. Radmanabhan, “A model for the deformation of nanocrystalline materials,” Philos. Mag. B, 76, 553–571 (1997).CrossRefGoogle Scholar
  28. 28.
    S. V. Bobylev and I. A. Ovid’ko, “Accommodation of grain-boundary sliding and increase in fracture toughness in deformed nanocrystalline materials,” Mater. Phys. Mech., 29, 43–70 (2016).Google Scholar
  29. 29.
    T. Shimokawa, A. Nakatani, and H. Kitagawa, “Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations,” Phys. Rev. B, 71, 224110–224118 (2005).CrossRefGoogle Scholar
  30. 30.
    S. A. Firstov, T. G. Rogul, V. L. Svechnikov, et al., “Structure, mechanical properties, and nanohardness of polycrystalline chromium and molybdenum coatings produced by magnetron sputtering,” Metallofiz. Noveish. Tekhnol., 25, No. 9, 1153–1164 (2003).Google Scholar
  31. 31.
    S. A. Firstov, T. G. Rogul, V. T. Marushko, et al., “Structure and microhardness of polycrystalline chromium produced by magnetron sputtering,” Vopr. Materialoved., No. 1 (33), 201–205 (2003).Google Scholar
  32. 32.
    S. A. Firstov and Yu. F. Lugovskoi, “Effect of the microstructure on the strength of composite materials under cyclic and static loads,” Élektron. Microsc. Prochn. Mater., No. 15, 83–88 (2008).Google Scholar
  33. 33.
    V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Strain Hardening and Destruction of Polycrystalline Metals [in Russian], Naukova Dumka, Kyiv (1987), p. 245.Google Scholar
  34. 34.
    A. V. Nokhrin, V. N. Chuvildeev, V. I. Kopylov, et al., Mechanical Properties of Nano- and Microcrystalline Metals [in Russian], Nizhniy Novgorod (2007), p. 46.Google Scholar
  35. 35.
    S. A. Firstov and T. G. Rogul, “Theoretical strength and theoretical hardness,” Deform. Razrush. Mater., No. 5, 1–7 (2011).Google Scholar
  36. 36.
    N. Wang, Z. Wang, K. T. Aust, et al., “Effect of grain size of the mechanical properties of nanocrystalline materials,” Acta Metall. Mater., 43, 519–524 (1995).CrossRefGoogle Scholar
  37. 37.
    D. M. Marsh, “Plastic flaw in glass,” Proc. R. Soc., No. A279, 420–424 (1964).Google Scholar
  38. 38.
    S. A. Firstov, V. Yu. Kulikovskii, T. G. Rogul, et al., “Mechanical properties of nanocrystalline chromium films with small oxygen additions,” Nanocryst. Materialoved., No. 4, 31–41 (2011).Google Scholar
  39. 39.
    A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, “Triple junction diffusion and plastic flow in finegrained materials,” Scr. Mater., 47, No. 1, 51–55 (2002).Google Scholar
  40. 40.
    E. É. Glikman and R. E. Bruver, “Equilibrium grain-boundary segregation and intercrystallite cold brittleness of solid solutions,” Metallofiz., No. 43, 42–63 (1972).Google Scholar
  41. 41.
    T. S. Ke, “A grain boundary model and mechanism of viscous intercrystalline slip,” J. Appl. Phys., 20, 274–282 (1949).CrossRefGoogle Scholar
  42. 42.
    A. I. Il’insky, A. E. Barmin, and S. I. Lyabuk, “Structure and strength characteristics of dispersion-hardened composite foils (films) based on iron and nickel,” Funct. Mater., 20, No. 4, 477–484 (2013).CrossRefGoogle Scholar
  43. 43.
    M. Danylenko, V. Gorban, Yu. Podrezov, et al., “Gradient structure formation by severe plastic deformation,” Mater. Sci. Forum, 503–504, 787–792 (2006).CrossRefGoogle Scholar
  44. 44.
    D. R. Lesuer, C. K. Syn, and O. D. Sherby, “Influence of severe plastic deformation on the structure and properties of ultrahigh-carbon steel wire,” in: T. C. Lowe and R. Z. Valiev (eds.), Investigations and Applications of Severe Plastic Deformation, NATO Science Series. 3. High Technology, Kluwer Academic Publishers (2000), Vol. 80, pp. 357–366.Google Scholar
  45. 45.
    G. T. Hahn, A. Gilbert, and R. I. Jaffee, “The effects of solutes on the brittle–ductile transition in refractory metals,” in: Refractory Metals and Alloys, Interscience Publishers, New York (1963).Google Scholar
  46. 46.
    S. Firstov, V. Kulikovsky, T. Rogul, et al., “Effect of small concentrations of oxygen and nitrogen on the structure and mechanical properties of sputtered titanium films,” Surf. Coat. Technol., 206, 3580–3585 (2012).CrossRefGoogle Scholar
  47. 47.
    A. V. Sergeeva, V. V. Stolyarov, R. Z. Valiev, et al., “Advanced mechanical properties of pure titanium with ultrafine grained structure,” Scr. Mater., 45, 747–752 (2001).CrossRefGoogle Scholar
  48. 48.
    A. R. Kutsar, M. N. Pavlovskii, and V. V. Komisarov, “Observation of two-wave configuration of blast wave in titanium,” Pis’ma Zh. Exp. Teor. Fiz., 35, No. 3, 91–94 (1982).Google Scholar
  49. 49.
    K. H. Huang, A Study on the Multicomponent Alloy System Containing Equimolar Elements: Master's Thesis, National Tsing Hua University, Taiwan (1995).Google Scholar
  50. 50.
    J. W. Yeh, Y. L. Chen, S. J. Lin, et al., “High-entropy alloys––a new era of exploitation,” Mater. Sci. Forum, 560, 1–9 (2007).CrossRefGoogle Scholar
  51. 51.
    Y. Zhang, “Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites,” Mater. Sci. Forum, 654–656, 1058–1061 (2010).CrossRefGoogle Scholar
  52. 52.
    O. N. Senkov, G. B. Wilks, D. B. Miracl, et al., “Refractory high-entropy alloys,” Intermetallics, 18, 1758–1765 (2010).CrossRefGoogle Scholar
  53. 53.
    O. N. Senkov, J. M. Scott, S. V. Sencova, et al., “Microstructure and room properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd., 509, 6043–6048 (2011).CrossRefGoogle Scholar
  54. 54.
    S. A. Firstov, V. F. Gorban, N. A. Krapivska, et al., “Strengthening and mechanical properties of as-cast high-entropy alloys,” Compos. Nanostruct., No. 2, 5–20 (2011).Google Scholar
  55. 55.
    S. A. Firstov, T. G. Rogul, N. A. Krapivka, et al., “Solid-solution strengthening of high-entropy AlTiVCrNbMo alloy,” Deform. Razrush. Mater., No. 2, 9–16 (2013).Google Scholar
  56. 56.
    S. A. Firstov, T. G. Rogul, N. A. Krapivka, et al., “Structural features and solid-solution strengthening of high-entropy CrMnFeCoNi alloy,” Powder Metall. Met. Ceram., 55, No. 3–4, 225–235 (2016).CrossRefGoogle Scholar
  57. 57.
    R. L. Fleischer, “Substitutional solution hardening,” Acta Metall., 11, 203–209 (1963).CrossRefGoogle Scholar
  58. 58.
    P. K. Huang, J. W. Yeh, T. T. Shum, et al., “Multiprincipal-element alloys improved oxidation and wear resistance for thermal spray coating,” Adv. Eng. Mater., 6, 74–78 (2004).CrossRefGoogle Scholar
  59. 59.
    W. H. Liu, Y. Wu, J. Y. He, et al., “Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy,” Scr. Mater., 68, 526–529 (2013).CrossRefGoogle Scholar
  60. 60.
    D. Wu, J. Zhang, J. C. Huang, et al., “Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals,” Scr. Mater., 68, 118–121 (2013).CrossRefGoogle Scholar
  61. 61.
    Z. Wu, Temperature and Alloying Effects on the Mechanical Properties of Equiatomic FCC Solid Solution Alloys: PhD Dissertation, University of Tennessee, USA (2014), p. 125: http://trace.tennessee.edu/utk_graddiss/2884.
  62. 62.
    Electronic resource: www.webelements.com.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations