Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 3–4, pp 144–153 | Cite as

Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding

  • D. Rahmatabadi
  • M. Tayyebi
  • R. HashemiEmail author
  • G. Faraji
Article

A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) of copper layers of the initial sample is reduced to ~7 μm after the fifth ARB cycle, while the thickness of Al layer increases. With increasing number of ARB cycles, the microhardness of both aluminum and copper layers is significantly increased. The tensile strength of the sandwich is enhanced continiousely, and the maximum value of 566.5 MPa is achieved. The high strength of 566.5 MPa and ductility of 9.61% is achieved, which is ~47 and ~21% higher, than the maximum values found out in the publications. The investigation of the tensile fracture of surfaces during ARB indicates that the increase in ARB cycles changes the fracture mechanism to shear ductile.

Keywords

multilayer composite Al–Cu ARB fractography mechanical properties microstructure 

References

  1. 1.
    R. Jamaati, M. R. Toroghinejad, and A. Najafizadeh, “An alternative method of processing MMCs by CAR process,” Mater. Sci. Eng.: A, 527, Nos. 10–11, 2720–2724 (2010).CrossRefGoogle Scholar
  2. 2.
    Yu. A. Shishkina, G. A. Baglyuk, V. S. Kurikhin, and D. G. Verbylo, “Effect of the deformation scheme on the structure and properties of hot-forged aluminum-matrix composites,” Powder Metall. Met. Ceram., 55, Nos. 1–2, 5–11 (2016).CrossRefGoogle Scholar
  3. 3.
    D. Lee and B. Kim, “Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application,” Mater. Letters, 58, Nos. 3–4, 378–383 (2004).CrossRefGoogle Scholar
  4. 4.
    I. Estrada-Guel, C. Carreño-Gallardo, D. Mendoza-Ruiz, et al., “Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying,”, J. Alloys Comp., 483, Nos. 1–2, 173–177 (2009).CrossRefGoogle Scholar
  5. 5.
    J. Lee, D. Bae, W. Chung, et al., “Effect of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets,” J. Mater. Proces. Technol., 187–188, 546–549 (2007).CrossRefGoogle Scholar
  6. 6.
    R. Nunes, J. H. Adams, M. Ammons, et al., Properties and Selection: Nonferrous Alloys and Special- Purpose Materials: ASM Handbook, Vol. 2, ASM International, USA (1990), p. 3470.Google Scholar
  7. 7.
    P. Shingu, K. Ishihara, A. Otsuki, and I. Daigo, “Nano-scaled multilayer bulk materials manufactured by repeated pressing and rolling in the Cu–Fe system,” Mater. Sci. Eng.: A, 304–306, 399–402 (2001).CrossRefGoogle Scholar
  8. 8.
    G. Faraji and H. Kim, “Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes,” Mater. Sci. Technol., 33, No. 8, 905–923 (2016).CrossRefGoogle Scholar
  9. 9.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progress Mater. Sci., 45, No. 2, 103–189 (2000).CrossRefGoogle Scholar
  10. 10.
    V. Segal, “Materials processing by simple shear,” Mater. Sci. Eng.: A, 197, No. 2, 157–164 (1995).CrossRefGoogle Scholar
  11. 11.
    M. Mesbah, G. Faraji, and A. Bushroa, “Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP),” Mater. Sci. Eng.: A, 590, 289–294 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Javidikia and R. Hashemi, “Analysis and simulation of parallel tubular channel angular pressing of Al 5083 tube,” Transac. Ind. Ins. Metals, 70, No. 10, 2547–2553 (2017).CrossRefGoogle Scholar
  13. 13.
    G. Sakai, Z. Horita, and T. G. Langdon, “Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion,” Mater. Sci. Eng.: A, 393, Nos. 1–2, 344–351 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Eskandarzade, A. Masoumi, G. Faraji, et al., J. Alloys Comp. (2016).Google Scholar
  15. 15.
    Y. Saito, N. Tsuji, H. Utsunomiya, et al., “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process,” Scripta Mater., 39, No. 9, 1221–1227 (1998).CrossRefGoogle Scholar
  16. 16.
    H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, “Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding,” Mater. Sci. Eng.: A, 497, Nos. 1– 2, 132–138 (2008).CrossRefGoogle Scholar
  17. 17.
    R. Jamaati and M. R. Toroghinejad, “Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding,” Mater. Sci. Eng.: A, 527, Nos. 16–17, 4146–4151 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Jamaati, S. Amirkhanlou, M. R. Toroghinejad, and B. Niroumand, “Significant improvement of semisolid microstructure and mechanical properties of A356 alloy by ARB process,” Mater. Sci. Eng.: A, 528, No. 6, 2495–2501 (2011).CrossRefGoogle Scholar
  19. 19.
    G. Min, J.-M. Lee, S.-B. Kang, and H.-W. Kim, “Evolution of microstructure for multilayerd Al/Ni composites by accumulative roll bonding process,” Mater. Letters, 60, No. 27, 3255–3259 (2006).CrossRefGoogle Scholar
  20. 20.
    V. Y. Mehr, M. R. Toroghinejad, and A. Rezaeian, “Mechanical properties and microstructure evolutions of multilayer Al–Cu composites produced by accumulative roll bonding process and subsequent annealing,” Mater. Sci. Eng.: A, 601, 40–47 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Eizadjou, A. K. Talachi, H. D. Manesh, et al., “Investigation of structure and mechanical properties of multilayer Al/Cu composite produced by accumulative roll bonding (ARB) process,” Comp. Sci. Technol., 68, No. 9, 2003–2009 (2008).CrossRefGoogle Scholar
  22. 22.
    R. N. Dehsorkhi, F. Qods, and M. Tajally, “Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process,” Mater. Sci. Eng.: A, 530, 63–72 (2011).CrossRefGoogle Scholar
  23. 23.
    K. Wu, H. Chang, E. Maawad, et al., “Microstructure and mechanical properties of the Mg/Al laminated composite fabricated byaccumulative roll bonding (ARB),” Mater. Sci. Eng.: A, 527, Nos. 13–14, 3073–3078 (2010).CrossRefGoogle Scholar
  24. 24.
    A. Shabani, M. R. Toroghinejad, and A. Shafyei, “Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties,” Mater. Sci. Eng.: A, 558, 386–393 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process,” Acta Mater, 47, No. 2, 579–583 (1999).CrossRefGoogle Scholar
  26. 26.
    M. Tayyebi and B. Eghbali, “Study on the manufacture and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding,” Mater. Sci. Eng.: A, 559, 759–764 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Reihanian and M. Naseri, “An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer,” Mater. Design, 89, 1213–1222 (2016).CrossRefGoogle Scholar
  28. 28.
    A. Mozaffari, H. D. Manesh, and K. Janghorban, “Evaluation of mechanical properties and structure of multilayer Al/Ni composites produced by accumulative roll bonding (ARB) process,” J. Alloys Comp., 489, No. 1, 103–109 (2010).CrossRefGoogle Scholar
  29. 29.
    H. Abdolvand, G. Faraji, M. B. Givi, et al., “Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation,” Met. Mater. Int., 21, No. 6, 1068–1073 (2015).CrossRefGoogle Scholar
  30. 30.
    G. Faraji, M. Mashhadi, A. Bushroa, and A. Babaei, “TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process,” Mater. Sci. Eng.: A, 563, 193–198 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Alizadeh and M. Samiei, “Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mevhanical properties,” Mater. Design, 56, 680–684 (2014).CrossRefGoogle Scholar
  32. 32.
    M. Sedighi, M. H. Vini, and P. Farhadipour, “Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding,” Powder Metall. Met. Ceram., 55, 413–418 (2016).CrossRefGoogle Scholar
  33. 33.
    M. H. Vini, M. Sedighi, and M. Mondali, “Mechanical properties, bond strength, and microstructure evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB),” Int. J. Mater. Research, 108, No. 1, 53–59 (2017).CrossRefGoogle Scholar
  34. 34.
    V. Y. Mehr, A. Rezaeian, and M. R. Toroghinejad, “Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite,” Mater. Design, 70, 53–59 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Pineau, A. A. Benzerga, and T. Pardoen, “Failure of metals I: Brittle and ductile fracture,” Acta Mater., 107, 424–483 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. Rahmatabadi
    • 1
  • M. Tayyebi
    • 2
  • R. Hashemi
    • 1
    Email author
  • G. Faraji
    • 3
  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Material EngineeringSahand University of TechnologyTabrizIran
  3. 3.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations