Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 3–4, pp 127–137 | Cite as

Investigation of Carbon Source and Atmosphere During Reduction–Carbonization Process of Synthesizing WC–Co Composite Powders Via Spray Conversion Method

  • Zhonghua Wang
  • Genfeng Shang
  • Jian Lü
  • Jiangao Yang
  • Hang WangEmail author
THEORY, MANUFACTURING TECHNOLOGY, AND PROPERTIES OF POWDERS AND FIBERS
  • 38 Downloads

Ultrafine WC–Co composite powders are synthesized via spray conversion method. The effect of carbon source (organic carbon and carbon black) and atmosphere (H2 and N2) on the composite powders is investigated in terms of phase composition, particle size distribution, morphology, and carbon content, including the total carbon and free carbon using X-ray diffraction, particle size analyzer, scanning electron microscope, and infrared carbon and sulfur analyzer. The results show that using organic carbon or carbon black and H2 or N2 has its own advantages and disadvantages. Therefore, carbon source and the atmosphere can be chosen according to the application of the composite powders, i.e. cemented carbides and thermal spraying.

Keywords

WC–Co composite powders spray conversion processing reduction–carbonization carbon source atmosphere 

Notes

Acknowledgements

Zhonghua Wang is grateful to Mr. Jie Wu for his assistance in conducting experiments.

References

  1. 1.
    R. M. Raihanuzzaman, M. Rosinski, Z. Xie, and R. Ghomashchi, “Microstructure and mechanical properties and of pulse plasma compacted WC–Co,” Int. J. Refrac. Met. Hard Mater., 60, 58–67 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Ghabchi, T. Varis, E. Turunen, et al., “Behavior of HVOF WC–10Co4Cr coatings with different carbide size in fine and coarse particle abrasion,” J. Therm. Spray Technol., 19, 368–377 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Emani, C. Wang, L. L. Shaw, and Z. Chen, “On the hardness of submicrometer-sized WC–Co materials,” Mater. Sci. Eng. A, 628, 98–103 (2015).CrossRefGoogle Scholar
  4. 4.
    S. I. Cha, S. H. Hong, G. H. Ha, and B. K. Kim, “Microstructure and mechanical properties of nanocrystalline WC–10Co cemented carbides,” Scripta Mater., 44, 1535–1539 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Jia, T. E. Fischer, and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC–Co composites,” Nanostr. Mater., 10, 875–891 (1998).CrossRefGoogle Scholar
  6. 6.
    M. H. Enayati, G. R. Aryanpour, and A. Ebnonnasir, “Production of nanostructured WC–Co powder by ball milling,” Int. J. Refrac. Met. Hard Mater., 27, 159–163 (2009).CrossRefGoogle Scholar
  7. 7.
    L. E. McCandlish, B. H. Kear, and B. K. Kim, “Processing and properties of nanostructured WC–Co,” Nanostr. Mater., 1, No. 2, 119–124 (1992).CrossRefGoogle Scholar
  8. 8.
    S. I. Cha, S. H. Hong, G. H. Ha, and B. K. Kim, “Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders,” Int. J. Refrac. Met. Hard Mater., 19, 397–403 (2001).CrossRefGoogle Scholar
  9. 9.
    K. Mohan and P. R. Strutt, “Microstructure of spray converted nanostructured tungsten carbide–cobalt composite,” Mater. Sci. Eng. A, 209, 237–242 (1996).CrossRefGoogle Scholar
  10. 10.
    L. E. McCandlish, B. H. Kear, and S. J. Bhatia. Spray Conversion Process for the Production of Nanophase Composite Powders, Patent 5352269 United States. Appl. Jul 09, 1991; Publ. Oct 04, 1994.Google Scholar
  11. 11.
    A. Mukhopadhyay and B. Basu, “Recent developments on WC-based bulk composites,” J. Mater. Sci., 46, 571–589 (2011).CrossRefGoogle Scholar
  12. 12.
    H. Lin, B. Tao, J. Xiong, et al., “Tungsten carbide (WC) nanopowders synthesized via novel core–shell structured precursors,” Ceram. Int., 39, 2877–2881 (2013).CrossRefGoogle Scholar
  13. 13.
    Q. Yang, J. Yang, H. Yang, et al., “Synthesis and characterization of WC–Co nanosized composite powders with in situ carbon and gas carbon sources,” Met. Mater. Int., 22, 663–669 (2016).CrossRefGoogle Scholar
  14. 14.
    G. H. Ha and B. K. Kim, “Synthesis of ultrafine WC–Co powder by mechanochemical process,” Powder Metallurgy, 45, 29–32 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Tang, M. Yi, and X. Tan, “Preparation of WC–Co composite powder by spray-drying and direct carbonization method,” Powder Metall. Technol., 28, 279–283 (2010).Google Scholar
  16. 16.
    Y. Jin, B. Huang, C. Liu, and Q. Fu, “Phase evolution in the synthesis of WC–Co–Cr3C2–VC nanocomposite powders from precursors,” Int. J. Refrac. Met. Hard Mater., 41, 169–173 (2013).CrossRefGoogle Scholar
  17. 17.
    U. Kanerva, J. Lagerbom, M. Karhu, et al., “Synthesis of nano-WC from water soluble raw materials: Effects of tungsten source and synthesis atmosphere on chemical and phase structure evolution,” Int. J. Refrac. Met. Hard Mater., 50, 65–71 (2015)CrossRefGoogle Scholar
  18. 18.
    U. Kanerva, M. Karhu, J. Lagerbom, et al., “Chemical synthesis of WC–Co from water-soluble precursors: The effect of carbon and cobalt additions to WC synthesis,” Int. J. Refrac. Met. Hard Mater., 56, 69–75 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Lü, J. Yang, H. Chen, et al., “Preparation of nanocrytalline WC–Co composite powder by spray-drying and low temperature reduction-carbonization process,” Mater. Sci. Eng. Powder Metall., 18, 835–839 (2013).Google Scholar
  20. 20.
    A. Kumar, K. Singh, and O. P. Pandey, “Reduction of WO3 to nano-WC by thermo-chemical reaction route,” Physica E: Low-Dimen. Sys. Nanostr., 41, No. 4, 677–684 (2009).CrossRefGoogle Scholar
  21. 21.
    R. Liu, D. Yi, and J. Li, “Study of preparing nanocrystalline WC powder,” J. Mater. Sci. Eng., 24, No. 3, 418–422 (2006).Google Scholar
  22. 22.
    J. Luo, Z. Guo, T. Lin, and X. Hu, “Study on removing free carbon of nanosized WC by heat processing in flowing hydrogen atmosphere,” Trans. Mater. Heat Treat., 28, No 1, 38–41 (2007).Google Scholar
  23. 23.
    J. Ruan and P. Huang, The Principle of Powder Metallurgy, Mechanical Industry Press, Beijing (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhonghua Wang
    • 1
    • 2
  • Genfeng Shang
    • 1
    • 2
  • Jian Lü
    • 1
  • Jiangao Yang
    • 1
  • Hang Wang
    • 1
    Email author
  1. 1.Institute of Engineering ResearchJiangxi University of Science and TechnologyGanzhouP. R. China
  2. 2.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouP. R. China

Personalised recommendations