Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 7–8, pp 490–497 | Cite as

Structural Differences of BaTiO3 Ceramics Modified by Ultrasonic and Mechanochemical Methods

  • Zeki Aydin
  • Selvin Turgut
  • Hatice Zehra Akbas
Article
  • 13 Downloads

Barium titanate powders were synthesized by the modified solid-state method with ultrasonic (5 min) and mechanochemical (12 h) deagglomeration methods. The structure of the samples was verified using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometer (XRD). Scanning electron microscopy (SEM) analysis of the powders showed that using ultrasonic deagglomeration significantly decreased the particle size with perfect homogeneity in the shortest time. The particle size of the powders was calculated as 44.7 nm and 80.4 nm for ultrasonic and mechanochemical deagglomeration, respectively. The sintered pellet by ultrasonic method had no abnormal grain growth, and the grain sizes were between 10 and 30 μm. The pellet by mechanochemical method had an abnormal grain growth, and the grain sizes were between 10 and 100 μm. The results showed that ultrasonication remarkably improved the structure of the samples in the shortest time.

Keywords

BaTiO3 deagglomeration milling ultrasonication grain size 

References

  1. 1.
    J. Kim, “Synthesis of porous (Ba, Sr)TiO3 ceramics and PTCR characteristics,” Mater. Chem. Phys., 78, No. 1, 154–159 (2002); http://www.sciencedirect.com/science/article/pii/S025405840200295X.CrossRefGoogle Scholar
  2. 2.
    M. Yuasa, T. Nagano, N. Tachibana, T. Kida, and K. Shimanoe, “Catalytic combustion-type hydrogen sensor using BaTiO3-based PTC Thermistor,” J. Am. Ceram. Soc., 96, No. 6, 1789–1794 (2013); doi: https://doi.org/10.1111/jace.12217.CrossRefGoogle Scholar
  3. 3.
    B. Guigues, J. Guillan, E. Defaÿ, P. Garrec, D. Wolozan, B. André, F. Laugier, R. Pantel, X. Gagnard, and M. Aïd, “SrTiO3/BaTiO3 multilayers thin films for integrated tunable capacitors applications,” J. Eur. Ceram. Soc., 27, Nos. 13–15, 3851–3854 (2007); doi: https://doi.org/10.1016/j.jeurceramsoc.2007.02.043.CrossRefGoogle Scholar
  4. 4.
    T.S. Chen, V. Balu, S. Katakam, J.H. Lee, and J.C. Lee, “Effects of Ir electrodes on barium strontium titanate thin-film capacitors for high-density memory application,” IEEE Trans. Electron Devices, 46, No. 12, 2304–2310 (1999). doi: https://doi.org/10.1109/16.808068.CrossRefGoogle Scholar
  5. 5.
    N.V. Dang, N.T. Dung, P.T. Phong, and I.-J. Lee, “Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics,” Physica B: Condensed Matter, 457, 103–107 (2015). doi: https://doi.org/10.1016/j.physb.2014.09.046.
  6. 6.
    C. Pecharroman, F. Esteban-Betegón, J.F. Bartolome, S. López-Esteban, and J.S. Moya, “New percolative BaTiO3 ± Ni composites with a high and frequency-independent dielectric constant (εr=80000), Adv. Mater., 13, No. 20, 1541–1544 (2001); doi: https://doi.org/10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X.CrossRefGoogle Scholar
  7. 7.
    J.Q. Qi, T. Peng, Y.M. Hu, L. Sun, Y. Wang, W.P. Chen, L.T. Li, C.W. Nan, and H.L.W. Chan, “Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature,” Nanoscale Research Letter, 6, 466, (2011); doi: https://doi.org/10.1186/1556-276X-6-466.
  8. 8.
    M.M. Vijatovic Petrovic, J.D. Bobic, H. Uršic, J. Banys, and B.D. Stojanovic, “The electrical properties of chemically obtained barium titanate improved by attrition milling,” J. Sol-Gel Sci. Technol. 67, No. 2, 267–272 (2013); doi: https://doi.org/10.1007/s10971-013-3075-9.CrossRefGoogle Scholar
  9. 9.
    O.B. Miloševic, M.K. Mirkovic, and D.P. Uskokovic, “Characteristics and formation mechanism of BaTiO3 powders prepared by twin fluid and ultrasonic spray-pyrolysis methods,” J. Am. Ceram. Soc., 79, No. 6, 1720–1722. (1996); http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1996.tb08794.x/abstract.CrossRefGoogle Scholar
  10. 10.
    U. Manzoor and D. Kim, “Synthesis of nano-sized barium titanate powder by solid-state reaction between barium carbonate and titania,” J. Mater. Sci. Technol., 23, No. 5, 655–658 (2007).Google Scholar
  11. 11.
    S.M. Antao and I. Hassan, “BaCO3: high-temperature crystal structures and the Pmcn→R3m phase transition at 811°C,” Phys. Chem. Miner., 34, No. 8, 573–580 (2007); doi: https://doi.org/10.1007/s00269-007-0172-8.CrossRefGoogle Scholar
  12. 12.
    D. Koziej, A. Lauria, and M. Niederberger, “25th Anniversary article: Metal oxide particles in materials science: Addressing all length scales,” Adv. Mater., 26, No. 2, 235–257(2014). doi: https://doi.org/10.1002/adma.201303161.CrossRefGoogle Scholar
  13. 13.
    J.C. Mutin, and J.C. Niepce, “About stoichiometry of polycrystalline BaTiO3 synthesized by solid-solid reaction,” J. Mater. Sci. Lett., 3, No. 7, 591–592 (1984); doi: https://doi.org/10.1007/BF00719620.CrossRefGoogle Scholar
  14. 14.
    S. Markovic, M. Miljkovic, C. Jovalekic, S. Mentus, and D. Uskokovic, “Densification, microstructure, and electrical properties of BaTiO3 (BT) ceramics prepared from ultrasonically de-agglomerated BT powders,” Mater. Manuf. Processes. 24, Nos. 10-11, 1114–1123 (2009); doi: https://doi.org/10.1080/10426910903031750.CrossRefGoogle Scholar
  15. 15.
    D. Kosanovic, N. Obradovic, J. Živojinovic, A. Maricic, V.P. Pavlovic, V.B. Pavlovic, and M.M. Ristic, “The influence of mechanical activation on sintering process of BaCO3–SrCO3–TiO2 system,” Sci. Sinter., 44, No. 3, 271–280 (2012); doi: https://doi.org/10.2298/SOS1203271K.CrossRefGoogle Scholar
  16. 16.
    H.Z. Akbas, Z. Aydin, O. Yilmaz, and S. Turgut, “Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics,” Ultrason. Sonochem., 34, 873–880 (2017); doi: https://doi.org/10.1016/j.ultsonch.2016.07.027.
  17. 17.
    H.Z. Akbas, Z. Aydin, I.H. Karahan, T. Dilsizoglu, and S. Turgut, “Effect of probe diameter on structure and morphological properties of TiO2 and ZrO2 powders in ultrasonication process,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 18, No.54, 304–316 (2016)Google Scholar
  18. 18.
    J.-J. Gan, and W.-C.J. Wei, “Synthesis and dielectric properties of Niobia coating on BaTiO3,” Int. J. Appl. Ceram. Technolology, 6, No. 6, 661–670, (2009); doi: https://doi.org/10.1111/j.1744-7402.2008.02301.x.
  19. 19.
    M. Ashokkumar, “The characterization of acoustic cavitation bubbles – An overview,” Ultrason. Sonochem., 18, No. 4, 864–872 (2011); http://www.sciencedirect.com/science/article/pii/S1350417710002312.CrossRefGoogle Scholar
  20. 20.
    M.A. Alavi, and A. Morsali, “Syntheses of BaCO3 nanostructures by ultrasonic method”, Ultrason. Sonochem., 15, No. 5, 833–838 (2008); http://www.sciencedirect.com/science/article/pii/S1350417708000321.CrossRefGoogle Scholar
  21. 21.
    M. Mousavi-Kamazani, M. Salavati-Niasari, and H. Emadi, “Preparation of stochiometric CuInS2 nanostructures by ultrasonic method”, Micro & Nano Letters, 7, No. 9, 896–900 (2012); doi: https://doi.org/10.1049/mnl.2012.0393.CrossRefGoogle Scholar
  22. 22.
  23. 23.
    M. Trivedi, G. Nayak, S. Patil, R. Tallapragada, and O. Latiyal, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Ind. Eng. Manage., 4, No. 3, 166 (2015); doi: https://doi.org/10.4172/2169-0316.1000166.
  24. 24.
    R. Ashiri, “Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process,” Vib. Spectrosc., 66, No. 1, 24–29 (2013). doi: https://doi.org/10.1016/j.vibspec.2013.02.001.CrossRefGoogle Scholar
  25. 25.
    T. Yamamoto, K. Urabe, and H. Banno, “BaTiO3 particle-size dependence of ferroelectricity in BaTiO3/Polymer composites,” Japanese J. Appl. Phys., 32, No. 9B, 4272–4276 (1993); doi: https://doi.org/10.1143/JJAP.32.4272.CrossRefGoogle Scholar
  26. 26.
    W.-S. Cho and E. Hamada, “Synthesis of ultrafine BaTiO3 particles from polymeric precursor: their structure and surface property,” Journal of Alloys and Compounds, 266, Nos. 1–2, 118–122 (1998); doi: https://doi.org/10.1016/S0925-8388(97)00446-5.
  27. 27.
    V.P. Pavlovic, M.V. Nikolic, V.B. Pavlovic, N. Labus, L. Živkovic, and B.D. Stojanovic, “Correlation between densification rate and microstructure evolution of mechanically activated BaTiO3,” Ferroelectrics, 319, No. 1, 75–85 (2005); doi: https://doi.org/10.1080/00150190590965451.CrossRefGoogle Scholar
  28. 28.
    S. Markovic, M. Mitric, G. Starcevic, and D. Uskokovic, “Ultrasonic de-agglomeration of barium titanate powder,” Ultrason. Sonochem., 15, No. 1, 16–20 (2008). doi: https://doi.org/10.1016/j.ultsonch.2007.07.008.CrossRefGoogle Scholar
  29. 29.
    B.D. Stojanovic, A.Z. Simoes, C.O. Paiva-Santos, C. Jovalekic, V.V. Mitic, and J.A. Varela, “Mechanochemical synthesis of barium titanate,” J. Eur. Ceram. Soc., 25, No. 12, 1985–1989 (2005); doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.003.CrossRefGoogle Scholar
  30. 30.
    K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara III, M.M. Mdleleni, and M. Wong, “Acoustic cavitation and its chemical consequences,” Philos. Trans. R. Soc. Lond., Ser. A., 357, No. 1751, 335–353 (1999); doi: https://doi.org/10.1098/rsta.1999.0330.CrossRefGoogle Scholar
  31. 31.
    J.M.F. Ferreira, S.M. Olhero, and A. Kaushal, “Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate?” J. Eur. Ceram. Soc., 33, Nos. 13-14, 2509–2517 (2013); doi: https://doi.org/10.1016/j.jeurceramsoc.2013.05.010.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zeki Aydin
    • 1
  • Selvin Turgut
    • 2
  • Hatice Zehra Akbas
    • 3
  1. 1.Department of Chemistry, Faculty of Science and LettersMustafa Kemal UniversityHatayTurkey
  2. 2.MARGEM, Mustafa Kemal UniversityHatayTurkey
  3. 3.Department of Physics, Faculty of Science and LettersMustafa Kemal UniversityHatayTurkey

Personalised recommendations