Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 7–8, pp 480–489 | Cite as

New Metastable Ternary Fe7.5MoC1.5 Phase: Nanosized State and Mn-Like Polymorphism

  • T. A. Velikanova
  • M. V. Graivoronskii
  • A. M. Zaslavskii
  • M. V. Kindrachuk
STRUCTURAL MATERIALS RESEARCH
  • 4 Downloads

The Fe–Mo–C spinning ribbons produced by rapid melt cooling at a rate of ~106 K/s have been studied by transmission electron microscopy. The metastable ternary phase of stoichiometry close to Fe7.5MoC1.5 has been found for the first time. In conditions far from equilibrium, this phase behaves like a metallochemical and structural analogue of elementary Mn in thermodynamic equilibrium conditions, namely: it can appear in crystalline structures that are isostructural to γ, β, and α polymorphic modifications of Mn (γ, π, and χ phases, respectively). In addition, the temperature sequence of diffusionless γ → π → χ transformations in the cooling process is similar to the temperature sequence of polymorphic γ → β → α transformations of Mn. In this case, the γ → π transformation is close to martensitic one, and the temperature of the π → χ transformation of nanosized metastable phases is close to the temperature of the polymorphic β-Mn ⇄ α-Mn transformation. The crystal lattices of the π and γ phases obey orientation relationships, for example: \( (110)\uppi \left[2\overline{2}1\right]\uppi \Big\Vert (101)\upgamma \left[0\overline{1}0\right]\upgamma . \)

Keywords

Fe–Mo–C system nanosized phases Mn-like polymorphism orientation relationships 

Notes

Acknowledgements

The authors are grateful to M.V. Karpets, ScD in Physics and Mathematics, for participation in the discussion of the results obtained.

References

  1. 1.
    T.A. Velikanova, “High-temperature phase transformations with participation of Mn-like phases in the Fe–Mo, Fe–Mo–C, and Fe–Mo–Cr–C systems,” Author’s Abstract of PhD Thesis in Chemical Sciences [in Ukrainian], 02.00.04, Inst. Probl. Materialoznav. NAN Ukrainy, Kyiv (2013), p. 24.Google Scholar
  2. 2.
    A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, W.H. Freeman & Company, transl. Paul Lorrain and Dorothee Sainte-Marie Lorrain, San Francisco and London (1963), p. 378.Google Scholar
  3. 3.
    T.A. Velikanova, M.V. Karpets, P.G. Agraval, and M.A. Turchanin, “Phase states of Fe–Mo–C spinning alloys at high temperatures,” Powder Metall. Met. Ceram., 49, No. 9–10, 606–615 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Inoue, T. Iwadachi, T. Minemura, et al., “Nonequilibrium phases in Fe–X–C (X = Cr, Mo or W) ternary alloys quenched rapidly from melts,” Trans. Jpn. Inst. Met., 22, No. 3, 197–209 (1981).CrossRefGoogle Scholar
  5. 5.
    I.S. Miroshnichenko, Melt Quenching [in Russian], Metallurgiya, Moscow (1982), p. 168.Google Scholar
  6. 6.
    T.A. Velikanova, M.V. Karpets, S.Yu. Artyuch, S.A. Balanetskiy, V.M. Petyuch, P.G. Agraval, and M.A. Turchanin, “Projection of the solidus surface of the Fe–Mo–C system in the composition range 0–40 at.% C,” Powder Metall. Met. Ceram., 50, No. 7–8, 442–451 (2011).CrossRefGoogle Scholar
  7. 7.
    T. A. Velikanova, M. V. Karpets, M. A. Turchanin, and P. G. Agraval, Manganese-like metastable phases in the Fe–Mo system: experimental study and thermodynamic modeling. II. Thermodynamic modeling of Fe–Mo metastable states,” Powder Metall. Met. Ceram., 49, No. 3–4, 207–214 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Nyman, C.E. Carroll, and B.G. Hyde, “Rectilinear rods of face-sharing tetrahedral and the structure of β-Mn,” Z. Kristallogr., 196, 39–46 (1991).CrossRefGoogle Scholar
  9. 9.
    A. Lord Eric, Alan L. Mackay, and S. Ranganathan, New Geometries for New Materials, Cambridge University Press, New York (2006), p. 258.Google Scholar
  10. 10.
    P.I. Kripyakevich, “On α-Mn and β-Mn structures,” Kristallografia, 5, No. 2, 273–281 (1960).Google Scholar
  11. 11.
    J.W. Gibbs, Thermodynamics. Statistical Mechanics [Russian translation], Nauka, Moscow (1982), p. 584.Google Scholar
  12. 12.
    A.I. Rusanov, “Nanothermodynamics,” Zh. Fiz. Khim., 77, No. 10, 1736–1741 (2003).Google Scholar
  13. 13.
    V.I. Vigdorovich, L.E. Tsygankova, and N.V. Shel, “Thermodynamics of nanosized systems,” Vest. TGU, 17, No. 3, 890–894 (2012).Google Scholar
  14. 14.
    O.M. Zaslavskii, “Formation of ‘unusual matter states by vacuum condensation,” Visn. Kyiv. Nats. Univ. Taras Shevchenko, Ser. Khim., No. 46, 31–34 (2008).Google Scholar
  15. 15.
    O.M. Zaslavskii, “Microstructure of fluorite-like solid solutions in vacuum condensates,” Powder Metall. Met. Ceram., 49, No. 5–6, 360–365 (2010).CrossRefGoogle Scholar
  16. 16.
    O.M. Zaslavskii, “Formation of titanium oxide phases in vacuum condensates produced by laser evaporation,” Powder Metall. Met. Ceram., 50, No. 5–6, 284–288 (2011).CrossRefGoogle Scholar
  17. 17.
    A.T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 317–425 (1991).CrossRefGoogle Scholar
  18. 18.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kasprzak (eds.), Binary Alloy Phase Diagrams, 2nd ed., 3 vols., Materials Park, ASM International, Ohio (1990), p. 3589.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. A. Velikanova
    • 1
  • M. V. Graivoronskii
    • 2
  • A. M. Zaslavskii
    • 3
  • M. V. Kindrachuk
    • 4
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Technical University ‘Igor Sikorsky Kyiv Polytechnic Institute’KyivUkraine
  3. 3.Ukrainian Research Institute ‘Resurs’State Reserve Agency of UkraineKyivUkraine
  4. 4.National Aviation UniversityKyivUkraine

Personalised recommendations