Skip to main content
Log in

Potential Size-Dependent Temperature Hysteresis of the First-Order Phase Transition in a Nanoscale Metallic Powder

  • NANOSTRUCTURED MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper describes the evolution of a nanoscale powder in the cyclic heat treatment process that induces first-order phase transition. Transformation α-Fe ↔ γ-Fe in the temperature cycling range 800 ↔ 1450 K is used as an example to obtain a thermal hysteresis (temperature difference between the forward and inverse transformations). The existence of a thermodynamic hysteresis is justified in conditions when the ergodic hypothesis is not valid for nanosystems, resulting in the difference between forward and inverse transformations α-Fe ↔ γ-Fe because of the difference in their energy barriers. The thermal hysteresis is determined by the superposition of size-dependent kinetic hysteresis and size-dependent thermodynamic hysteresis. Three different cases of size dependence of the hysteresis loop width for the volume content of the new phase are identified. A potential weak size effect or zero size effect in a wide nanosize range resulting from the compensation of kinetic and thermodynamic hystereses is justified for the first time. The correlations between the size of nanopowder particles, cycling rate, and hysteresis loop width for the volume content of the new phase exhibit logarithmic dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. S. Shirinyan and V. A. Makara, Size-Dependent Physicochemical Phenomena in Nanosized Solid Systems: Monograph [in Ukrainian], in 2 parts, Kyivsky Universytet, Kyiv (2014), p. 319.

    Google Scholar 

  2. T. Sarkar, S. Roy, J. Bhattacharya, et al., “Thermal hysteresis of some important physical properties of nanoparticles,” J. Colloid Interface Sci., 327, 224–232 (2008).

    Article  Google Scholar 

  3. A. Atitoaie, R. Tanasa, and C. Enachescu, “Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte-Carlo based Ising-like model,” J. Magn. Magn. Mater., 324, 1596–1600 (2012).

    Article  Google Scholar 

  4. T. Krenke, M. Acet, E. F. Wassermann, et al., “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of NiMn–Sn alloys,” Phys. Rev. B, 72, 014412(1)–014412(9) (2005).

    Article  Google Scholar 

  5. P. J. Shamberger and F. S. Ohuchi, “Hysteresis of the martensitic phase transition in magnetocaloric effect Ni–Mn–Sn alloys,” Phys. Rev. B, 79, 144407(1)–144407(9) (2009).

    Article  Google Scholar 

  6. A. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Adsorption hysteresis in nanopores,” Phys. Rev. B, 65, R1493–R1496 (2002).

    Google Scholar 

  7. W. A. Jesser, R. Z. Shneck, and W. W. Gille, “Solid-liquid equilibria in nanoparticles of Pb–Bi alloys,” Phys. Rev. B, 69, 144121(1)–144121(13) (2004).

    Article  Google Scholar 

  8. D. Michel, B. F. Borisov, E. V. Charnaya, et al., “Phase transitions for gallium microparticles in a porous glass,” Nanostruct. Mater., 12, 515–518 (1999).

    Article  Google Scholar 

  9. V. V. Kokorin and L. E. Kozlova, “Effect of nanoparticles on structural states of martensitic phases in Fe and Cu alloys,” Nanosyst. Nanomater. Nanotekhnol., 2, No. 2, 645–673 (2004).

    Google Scholar 

  10. K. Jacobs, D. Zaziski, E. C. Scher, et al., “Activation volumes for solid–solid transformations in nanocrystals,” Science, 293, 1803–1806 (2001).

    Article  Google Scholar 

  11. D. R. Knittel, S. P. Pack, S. H. Lin, and L. Eyring, “A thermodynamic model of hysteresis in phase transitions and its application to rare earth oxide systems,” J. Chem. Phys., 67, No. 1, 134–142 (1977).

    Article  Google Scholar 

  12. A. S. Shirinyan and Y. S. Bilogorodskyy, “Size-induced thermal thermodynamic hysteresis in nanopowder undergoing structural transitions––from particular case to general behavior,” J. Phase Trans., 82, No. 7, 551–565 (2009).

    Article  Google Scholar 

  13. S. S. Kiparisov, A. A. Nuzhdin, and S. V. Strelova, “Some characteristics of the reverse polymorphic transformations of sintered iron and cobalt,” Powder Metall. Met. Ceram., 23, No. 7, 546–550 (1984).

    Google Scholar 

  14. F. J. Shackelford and W. Alexander (eds.), CRC Materials Science and Engineering Handbook, 3rd ed., CRC Press LLC Inc. Boca Raton, London–New York–Washington–Florida (2001), p. 1949.

  15. B. Ya. Lyubov, Kinetic Theory of Phase Transitions [in Russian], Metallurgiya, Moscow (1969), p. 264.

    Google Scholar 

  16. B. S. Gudkov, A. N. Subbotin, and V. I. Yakerson, “Temperature hysteresis in heterogeneous catalysis,” Priroda, No. 6, 16–21 (2001).

  17. W. S. Lai and X. S. Zhao, “Strain-induced elastic moduli softening and associated fcc<–>bcc transition in iron,” Appl. Phys. Lett., 85, No. 19, 4340–4342 (2004).

    Article  Google Scholar 

  18. L. H. Liang and Q. Jiang, “Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals,” Acta Mater., 53, 3305–3311 (2005).

    Article  Google Scholar 

  19. J. W. Christian, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, Oxford (1975).

    Google Scholar 

  20. R. C. Weast, M. J. Astle, and W. H. Beyer (eds.), 1986-1987 CRC Handbook of Chemistry and Physics, 67th ed., CRC Press Inc., Florida (1987), p. 2000.

  21. W. Matienseen and H. Warlimont (eds.), Springer Handbook of Condensed Matter and Materials Data, Springer, Berlin–Heidelberg–New York (2005), p. 1120.

  22. L. Vitos, A. V. Ruban, H. L. Skriver, et al., “The surface energies of metals,” Surf. Sci., 411, 186–202 (1998).

    Article  Google Scholar 

  23. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca–London (1981), p. 570.

    Google Scholar 

  24. A. S. Shirinyan, Y. S. Bilogorodskyy, and J. W. P. Schmelzer, “Influence of nanopowder particle sizes on competition and growth of different crystallographic phases during temperature cycling,” Acta Mater., 57, 5771–5781 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shirinyan.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 5–6 (515), pp. 20–34, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirinyan, A.S., Bilogorodsky, Y.S. & Makara, V.A. Potential Size-Dependent Temperature Hysteresis of the First-Order Phase Transition in a Nanoscale Metallic Powder. Powder Metall Met Ceram 56, 253–263 (2017). https://doi.org/10.1007/s11106-017-9893-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9893-5

Keywords

Navigation