Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 55, Issue 9–10, pp 559–566 | Cite as

Electrode Materials Based on LaMgNi4–x Co x (0 ≤ x ≤ 1) Alloys

  • Yu. V. Verbovytskyy
  • V. V. Shtender
  • P. Ya. Lyutyi
  • I. Yu. Zavaliy
Article

The LaMgNi4–xCox (x = 0, 0.33, 0.67, 1) alloys are prepared by sintering and prolonged heat treatment at 500°C, with the main cubic phase of MgCu4Sn type. The alloy samples ball-milled in an argon atmosphere show the glass-forming ability. Electrochemical experiments of the LaMgNi4–xCox electrodes are performed at charge and discharge current densities of 100 mAh. The maximum discharge capacity is exhibited by the powdered alloys (218–302 mAh/g) compared to the ball-milled ones (92–134 mAh/g). The cobalt content of the LaMgNi4–xCox alloys influences the electrode characteristics. The highest discharge capacity is shown by the powdered alloy with x = 0.33. The ball-milled alloys have slightly higher cyclic stability.

Keywords

rare earth alloys magnesium-based alloys hydrides electrochemical properties electrode materials 

References

  1. 1.
    P. H. L. Notten and M. Latroche, “Secondary batteries—nickel systems, nickel–metal hydride: Metal hydrides,” in: J. Garche (ed.), Encyclopedia of Electrochemical Power Sources, Elsevier B.V. & Academic Press, Amsterdam (2009), pp. 502–521.Google Scholar
  2. 2.
    Y. Liu, H. Pan, M. Gao, and Q. Wang, “Advanced hydrogen storage alloys for Ni/MH rechargeable batteries,” J. Mater. Chem., 21, 4743–4755 (2011).CrossRefGoogle Scholar
  3. 3.
    Y. Liu, Y. Cao, L. Huang, et al., “Rare earth–Mg–Ni–based hydrogen storage alloys as negative electrode materials for Ni/MH batteries,” J. Alloys Compd., 509(3), 675–686 (2011).CrossRefGoogle Scholar
  4. 4.
    Yu. V. Verbovitskii and I. Yu. Zavalii, “New metal-hydride electrode materials based on R1–xMgxNi3–4 alloys for chemical current sources,” Fiz. Khim. Mekh. Mater., No. 4, 7–18 (2015).Google Scholar
  5. 5.
    S. Yasuoka, Y. Magari, T. Murata, et al., “Development of high–capacity nickel–metal hydride batteries using superlattice hydrogen–absorbing alloys,” J. Power Sources, No. 156, 662–666 (2006).CrossRefGoogle Scholar
  6. 6.
  7. 7.
    T. Kohno, H. Yoshida, F. Kawashima, et al., “Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14,” J. Alloys Compd., 311, L5–L7 (2000).CrossRefGoogle Scholar
  8. 8.
    Yu. V. Verbovitskii, R. V. Denis, V. V. Shtender, and I. Yu. Zavalii, “Phase-structural and electrochemical properties of La2MgNi9 alloys,” Powder Metall. Met. Ceram., 54, No. 3–4, 220–226 (2016).Google Scholar
  9. 9.
    V. A. Yartys, A. B. Riabov, R. V. Denys, et al., “Novel intermetallic hydrides,” J. Alloys Compd., 408–412, 273–279 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Zhou, Y. Wang, and Q. Yao, “The 673 and 1123 K isothermal sections (partial) of the phase diagram of the Ce–Mg–Ni ternary system,” J. Alloys Compd., 407, 129–131 (2006).CrossRefGoogle Scholar
  11. 11.
    H. Zhou, X. Xu, G. Cheng, et al., “The 773 and 1123 K isothermal sections of the phase diagram of the Mg–Ni–Pr ternary system,” J. Alloys Compd., 386, 144–146 (2005).CrossRefGoogle Scholar
  12. 12.
    H. Zhou, S. Zhang, Q. Yao, and W. Li, “The isothermal sections of the phase diagram of the Nd–Mg–Ni ternary system at 1123 and 673 K (Ni–rich part),” J. Alloys Compd., 429, 116–118 (2007).CrossRefGoogle Scholar
  13. 13.
    K. Kadir, D. Noreus, and I. Yamashita, “Structural determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd, and Y) in the AuBe5 type structure,” J. Alloys Compd., 245, 140–143 (2002).CrossRefGoogle Scholar
  14. 14.
    S. Linsinger, M. Eul, Ch. Schwickert, et al., “Structure, homogeneity ranges, magnetic, and electrical properties of the ordered Laves phases RENi4Mg with MgCu4Sn type structure,” Intermetallics, 19, 1579–1585 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Chotard, D. Sheptyakov, and K. Yvon, “Hydrogen induced site depopulation in the LaMgNi4–hydrogen system,” Z. Kristallogr., 223, 690–696 (2008).CrossRefGoogle Scholar
  16. 16.
    K. Sakaki, N. Terashita, H. Kim, et al., “Crystal structure and local structure of Mg2–xPrxNi4 (x = 0.6 and 1.0) deuteride using in situ neutron total scattering,” Inorg. Chem., 52, 7010–7019 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Guéneé, V. Favre–Nicolin, and K. Yvon, “Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg,” J. Alloys Compd., 348, 129–137 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Tan, X. Zeng, J. Zou, et al., “Preparation of LaMgNi4–xCox alloys and hydrogen storage properties,” Trans. Nonferrous Met. Soc. China, 23, 2307–2311 (2013).CrossRefGoogle Scholar
  19. 19.
    Z. M. Wang, H. Zhou, R. P. Zou, and Q. Yao, “Effect of sintering conditions on the formation of single–phase NdMgNi4 compound and its hydrogen storage properties,” J. Alloys Compd., 429, 260–263 (2007).CrossRefGoogle Scholar
  20. 20.
    V. V. Shtender, R. V. Denys, V. Paul-Boncour, et al., “Effect of Co substitution on hydrogenation and magnetic properties of NdMgNi4 alloy,” J. Alloys Compd., 639, 526–532 (2015).CrossRefGoogle Scholar
  21. 21.
    S. Zhang, H. Zhou, Z. Wang, et al., “Preparation and electrode properties of NdMgNi4–xCox hydrogen storage alloys,” J. Alloys Compd., 398, 269–271 (2005).CrossRefGoogle Scholar
  22. 22.
    Z. M. Wang, H. Y. Zhou, Z. F. Gu, et al., “Preparation of LaMgNi4 alloy and its electrode properties,” J. Alloys Compd., 377, L7–L9 (2004).CrossRefGoogle Scholar
  23. 23.
    Z. M. Wang, H. Y. Zhou, G. Cheng, et al., “Preparation and electrode properties of new ternary alloys: REMgNi4 (RE = La, Ce, Pr, Nd),” J. Alloys Compd., 384, 279–282 (2004).CrossRefGoogle Scholar
  24. 24.
    X. Xu, H. Y. Zhou, R. P. Zou, et al., “Hydrogen storage properties of new ternary alloys: PrMg2Ni9 and PrMgNi4,” J. Alloys Compd., 396, 247–250 (2005).CrossRefGoogle Scholar
  25. 25.
    T. Zhai, T. Yang, Z. Yuan, and Y. Zhang, “An investigation on electrochemical and gaseous hydrogen storage performances of as-cast La1–xPrxMgNi3.6Co0.4 (x = 0–0.4) alloys,” Int. J. Hydrogen Energy, 39, 14282–14287 (2014).CrossRefGoogle Scholar
  26. 26.
    G. Nolze and W. Kraus, Powder Cell for Windows (Version 2.3), Federal Institute for Materials Research and Testing, Berlin (1999).Google Scholar
  27. 27.
    J. Rodriguez–Carvajal, Program FullProf.2k (Version 5.00), Laboratoire Léon Brillouin, Léon (2011).Google Scholar
  28. 28.
    J.-G. Roquefere, B. Chevalier, R. Pöttgen, et al., “Structural, magnetic, electrochemical and hydrogen absorption properties of GdyMg2–yNi4–xAlx compounds with 0.4 < y < 2 and 0 < x < 1.2,” Intermetallics, 16, 179–187 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu. V. Verbovytskyy
    • 1
  • V. V. Shtender
    • 1
  • P. Ya. Lyutyi
    • 1
  • I. Yu. Zavaliy
    • 1
  1. 1.Karpenko Physicomechanical InstituteNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations