Powder Metallurgy and Metal Ceramics

, Volume 55, Issue 9–10, pp 505–510 | Cite as

Process Approaches for Producing Complex Composite Inoculants by Rolling of Powder Mixtures. III. Production and Properties of Multi-Component Compacts and Rolled Strips of Powder Inoculants with Different Compositions

  • K. A. Gogaev
  • S. M. Voloshchenko
  • Yu. N. Podrezov
  • A. K. RadchenkoEmail author
  • L. A. Radchenko
  • Ya. I. Yevych

The formation of inoculants by pressing and rolling is studied. To obtain process-strong inoculant billets (moldings), optimal routes for the formation of mixtures containing brittle materials that the complex inoculants consist of (up to 60 wt.%) are worked out. It is established that the decrease in the apparent relative density of the powders of ductile components allows decreasing the total content of the latter. The application of large diameter rolls allows obtaining thicker strips, whose strength and density greatly exceeds the required processing strength of the moldings. The increase in the final strip thickness allows increasing the weight of the billet and, therefore, increasing the process efficiency. The powder rolling ensures the production of 5–6 tons of inoculants per month using a 500 mm roller mill.


powders inoculant mixtures cast iron rolling strip 


  1. 1.
    K. A. Gogaev, S. M. Voloshchenko, Yu. N. Podrezov, et al., “Process approaches for producing complex composite inoculants by rolling of powder mixtures. I. Inoculant powder mixtures. Composition, structure, and properties,” Powder Metall. Metal. Ceram., 55, Nos. 5–6, 270–276 (2016).Google Scholar
  2. 2.
    K. A. Gogaev, S. M. Voloshchenko, Yu. N. Podrezov, et al., “Process approaches for producing complex composite inoculants by rolling of powder mixtures. II. Compacting conditions, structure, and properties of two-component model systems Fe–FeSi and Al–FeSi,” Powder Metall. Metal. Ceram., 55, Nos. 7–8, 52–59 (2016).Google Scholar
  3. 3.
    S. M. Voloshchenko, K. A. Gogaev, et al., “The application of rolling technique for producing complex composite inoculants,” Prots. Litya, No. 5, 41–44 (2007).Google Scholar
  4. 4.
    S. M. Voloshchenko and K. A. Gogaev, “Complex modifiers produced by rolling of powder mixtures for iron–carbon steels,” Powder Metall. Metal. Ceram., 48, No. 1, 100–104 (2009).CrossRefGoogle Scholar
  5. 5.
    E. A. Taran, “Particular processing of iron with iron–magnesium powder briquettes,” Lit. Proizvod., No. 7, 30 (1972).Google Scholar
  6. 6.
    Yu. N. Semenov, “Determining the strength of the compacts of metallic powders,” Zavod. Lab., No. 10, 1240–1247 (1958).Google Scholar
  7. 7.
    V. M. Gorokhov, O. A. Prokhorov, and I. N. Tarusov, The Effect of the Compacting Temperature and Relative Density of the Compacts from Diffusion-Doped Steel Powders on the Ultimate Tensile Stress During Different Tests, in: Surface Engineering. New Powder Composite Materials. Welding [in Russian]. Vol. 1, GNU “Institut Poroshkovoy Metallurgii, Minsk (2011), pp. 92–96.Google Scholar
  8. 8.
    N. N. Pavlov, Studying Physical and Mechanical Properties of Metallic Powders and the Rolled Strips Produced Hereof, in: Metal Processing under Pressure [in Russian], Issue 238, Leningrad Politekh, Inst., Mashinostroyeniye, Leningrad (1964), pp. 25–33.Google Scholar
  9. 9.
    G. A. Vinogradov, Yu. N. Semenov, O. A. Katrus, and V. P. Katashinskii, Rolling Metallic Powders [in Russian], Metallurgiya, Moscow (1966), p. 187.Google Scholar
  10. 10.
    G. I. Aksenov, Basics of Powder Metallurgy [in Russian], Kuibyshevskoye Knizhnoye Izdatel’stvo, Kuibyshev (1962), p. 107.Google Scholar
  11. 11.
    G. I. Aksenov, G. A. Vinogradov, E. B. Lozhechnikov, and G. F. Tikhonov, “Theory and practice of rolling cermet powders in the Soviet Union (Review),” Powder Metall. Metal. Ceram., 6, No. 11, 861–868 (1967).CrossRefGoogle Scholar
  12. 12.
    G. I. Vinogradov and V. P. Katashinskii, Theory of Flat Rolling of Metallic Powders and Granules [in Russian], Metallurgiya, Moscow (1979), p. 224.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • K. A. Gogaev
    • 1
  • S. M. Voloshchenko
    • 1
  • Yu. N. Podrezov
    • 1
  • A. K. Radchenko
    • 1
    Email author
  • L. A. Radchenko
    • 1
  • Ya. I. Yevych
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations