Powder Metallurgy and Metal Ceramics

, Volume 54, Issue 7–8, pp 471–481 | Cite as

Cocrystallization of Max-Phases in the Ti–Al–C System

  • S. V. Sleptsov
  • A. A. Bondar
  • V. T. Witusiewicz
  • U. Hecht
  • B. Hallstedt
  • V. M. Petyukh
  • O. I. Dovbenko
  • T. Ya. Velikanova
Article

The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti41.5Al38.5C20 samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti3AlC2 (N-phase of Ti3SiC2 type), Ti2AlC (H, Cr2AlC type), and binary intermetallic TiAl3 (ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.

Keywords

Al–Ti–C system MAX-phases Ti3AlC2 Ti2AlC solidus 

References

  1. 1.
    M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci., 89, 334–343 (2001).CrossRefGoogle Scholar
  2. 2.
    P. Eklund, M. Beckers, U. Jansson, et al., “The Mn+1AXn phases: materials science and thin-film processing,” Thin Solid Films, 518, No. 8, 1851–1878 (2010).CrossRefGoogle Scholar
  3. 3.
    M. A. Pietzka, Structural Chemistry, Phase Equilibria, and Chemical Analysis in the Systems Ti–Al–C and Ti–Al–N: Thesis [in German], University of Vienna (1992), p. 52.Google Scholar
  4. 4.
    M. A. Pietzka and J. C. Schuster, “Summary of constitutional data on the aluminum–carbon–titanium system,” J. Phase Equilib., 15, No. 4, 392–400 (1994).CrossRefGoogle Scholar
  5. 5.
    Zh. Ge, K. Chen, J. Guo, et al., “Combustion synthesis of ternary carbide Ti3AlC2 in Ti–Al–C system,” J. Eur. Ceram. Soc., 23, 567–574 (2003).CrossRefGoogle Scholar
  6. 6.
    L. Cornish, G. Cacciamani, D. Cupid, and J. De Keyzer, “Aluminum–carbon–titanium,” in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, W. Martinsen (ed.), New Series. Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (eds.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Vol. 11E1, Springer-Verlag, Berlin, Heidelberg (2009), pp. 41–71.Google Scholar
  7. 7.
    P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., Handbook in 4 Vols., ASM Int. Mater. Park, Ohio (1991).Google Scholar
  8. 8.
    V. T. Witusiewicz, A. A. Bondar, U. Hecht, et al., “The Al–B–Nb–Ti system. III. Thermodynamic reevaluation of the constituent binary system Al–Ti,” J. Alloys Compd., 465, No. 1–2, 64–77 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Braun and M. Ellner, “Phase equilibria investigations on the aluminum-rich part of the binary system Ti–Al,” Met. Mater. Trans. A, 32A, 1037–1048 (2001).CrossRefGoogle Scholar
  10. 10.
    V. T. Witusiewicz, A. A. Bondar, U. Hecht, et al., “Experimental study and thermodynamic remodeling of the ternary Ti–Al–C system,” in: Proc. Discussion Meeting on Thermodynamics of Alloys (TOFA), Pula, Croatia (2012), p. 2.Google Scholar
  11. 11.
    M. Pirani and H. Alterthum, “On the method for determining the melting point of refractory metals,” Z. Elektrochem., 29, No. 1–2, 5–8 (1923).Google Scholar
  12. 12.
    R. A. Young, A. Sakthivel, T. S. Moss, and C. O. Paiva-Santos, “DBWS-9411—an upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr., 28, 366–367 (1995).CrossRefGoogle Scholar
  13. 13.
    Ju. A. Kocherzhinsky, “Differential thermocouple up to 2450°C and thermographic investigations of refractory silicides,” in: Proc. Third ICTA (Davos) Therm. Analysis, Birkhäuser Verlag, Basel (1971), Vol. 1, pp. 549–559.Google Scholar
  14. 14.
    Yu. A. Kocherzhinsky, E. A. Shishkin, and V. I. Vasilenko, “DTA apparatus with a thermocouple sensor to 2200°C,” in: Phase Diagrams of Metallic Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.Google Scholar
  15. 15.
    W. J. Boettinger, U. R. Kattner, K.-W. Moon, and J. H. Perepezko, DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing: NIST Recommended Practice Guide, Special Publication 960-15, National Institute of Standards and Technology, Washington, USA (2006), p. 90.Google Scholar
  16. 16.
    J. Grobner, H. L. Lukas, and F. Aldinger, “Thermodynamic calculations in the Y–Al–C system,” J. Alloys Compd., 220, 8–14 (1995).CrossRefGoogle Scholar
  17. 17.
    L. F. S. Dumitrescu, M. Hillert, and B. Sundman, “A reassessment of Ti–C–N based on available assessments of Ti–N and Ti–C,” Z. Metallkd., 90, No. 7, 534–541 (1999).Google Scholar
  18. 18.
    V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, et al., “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd., 623, 480–496 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. V. Sleptsov
    • 1
  • A. A. Bondar
    • 1
  • V. T. Witusiewicz
    • 2
  • U. Hecht
    • 2
  • B. Hallstedt
    • 3
  • V. M. Petyukh
    • 1
  • O. I. Dovbenko
    • 1
  • T. Ya. Velikanova
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.ACCESS e.V.AachenGermany
  3. 3.Research Center of RWTH Aachen UniversityAachenGermany

Personalised recommendations